We present the system submission from the FASTPARSE team for the EUD Shared Task at IWPT 2020. We engaged with the task by focusing on efficiency. For this we considered training costs and inference efficiency. Our models are a combination of distilled neural dependency parsers and a rule-based system that projects UD trees into EUD graphs. We obtained an average ELAS of 74.04 for our official submission, ranking 4th overall.
This paper presents a simple framework for characterizing morphological complexity and how it encodes syntactic information. In particular, we propose a new measure of morphosyntactic complexity in terms of governordependent preferential attachment that explains parsing performance. Through experiments on dependency parsing with data from Universal Dependencies (UD), we show that representations derived from morphological attributes deliver important parsing performance improvements over standard word form embeddings when trained on the same datasets. We also show that the new morphosyntactic complexity measure is predictive of the gains provided by using morphological attributes over plain forms on parsing scores, making it a tool to distinguish languages using morphology as a syntactic marker from others.
The lack of annotated data is a big issue for building reliable NLP systems for most of the world's languages. But this problem can be alleviated by automatic data generation. In this paper, we present a new data augmentation method for artificially creating new dependency-annotated sentences. The main idea is to swap subtrees between annotated sentences while enforcing strong constraints on those trees to ensure maximal grammaticality of the new sentences. We also propose a method to perform low-resource experiments using resource-rich languages by mimicking low-resource languages by sampling sentences under a low-resource distribution. In a series of experiments, we show that our newly proposed data augmentation method outperforms previous proposals using the same basic inputs.
Languages evolve and diverge over time. Their evolutionary history is often depicted in the shape of a phylogenetic tree. Assuming parsing models are representations of their languages grammars, their evolution should follow a structure similar to that of the phylogenetic tree. In this paper, drawing inspiration from multi-task learning, we make use of the phylogenetic tree to guide the learning of multilingual dependency parsers leveraging languages structural similarities. Experiments on data from the Universal Dependency project show that phylogenetic training is beneficial to low resourced languages and to well furnished languages families. As a side product of phylogenetic training, our model is able to perform zero-shot parsing of previously unseen languages.
This paper presents a new approach to the problem of cross-lingual dependency parsing, aiming at leveraging training data from different source languages to learn a parser in a target language. Specifically, this approach first constructs word vector representations that exploit structural (i.e., dependency-based) contexts but only considering the morpho-syntactic information associated with each word and its contexts. These delexicalized word embeddings, which can be trained on any set of languages and capture features shared across languages, are then used in combination with standard language-specific features to train a lexicalized parser in the target language. We evaluate our approach through experiments on a set of eight different languages that are part the Universal Dependencies Project. Our main results show that using such delexicalized embeddings, either trained in a monolingual or multilingual fashion, achieves significant improvements over monolingual baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.