Map2k1-/-embryos die at mid-gestation from abnormal development and hypovascularization of the placenta. We now show that this phenotype is associated with a decreased labyrinth cell proliferation and an augmented cell apoptosis. Although the activation of MAP2K1 and MAP2K2 is widespread in the labyrinthine region, MAPK1 and MAPK3 activation is restricted to the cells lining the maternal sinuses, suggesting an important role for the ERK/MAPK cascade in these cells. In Map2k1 -/-placenta, ERK/MAPK cascade activation is perturbed. Abnormal localization of the syncytiotrophoblasts is also observed in Map2k1 -/-placenta, even though this cell lineage is specified at the correct time during placentogenesis. The placental phenotype can be rescued in tetraploid experiments. In addition, Map2k1-specific deletion in the embryo leads to normal embryo development and to the birth of viable Map2k1 -/-mice. Altogether, these data enlighten the essential role of Map2k1 in extra-embryonic ectoderm during placentogenesis. In the embryo, the Map2k1 gene function appears dispensable.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurological disease characterized by progressive loss of motor neurons. At present, the pathological events precipitating disease onset and the exact pattern of disease progression are not fully understood. Recent studies suggest that glial cells, in particular activated astrocytes, can release factors that can directly kill motor neurons. To further investigate the involvement of glial cells (astrocytes and Schwann cells) in the pathogenesis of ALS, we generated ALS-(GFAP-luciferase/SOD(G93A)) reporter mouse in which upregulation of glial fibrillary acidic protein (GFAP) can be visualized from live animals throughout the different stages of disease. Our results suggest that the disease in mice is initiated simultaneously in the spinal cord and in the peripheral nerves and is characterized by several cycles of GFAP upregulation. Immunohistochemical analysis confirmed that the induction GFAP bioluminescence signals were associated with the significant increases in GFAP immunoreactivity. The first pathological GFAP signals occurring at 25-30 days were asymptomatic and detectable at the level of lumbar spinal cord projections and at the periphery. These early events were then followed by GFAP promoter inductions that were associated with the distinct clinical symptoms. As expected, the onset of paralysis (112 days) was associated with the gradual and marked GFAP upregulation in the spinal cord. Interestingly, however, the disease onset (90 days) was characterized by sharp and synchronized induction of GFAP in peripheral nerve Schwann cells suggesting that peripheral nerves pathology/denervation and associated Schwann cell stress may play an important role in the ALS pathogenesis.
There is emerging evidence that the misfolding of superoxide dismutase 1 (SOD1) may represent a common pathogenic event in both familial and sporadic amyotrophic lateral sclerosis (ALS). To reduce the burden of misfolded SOD1 species in the nervous system, we have tested a novel therapeutic approach based on adeno-associated virus (AAV)–mediated tonic expression of a DNA construct encoding a secretable single-chain fragment variable (scFv) antibody composed of the variable heavy and light chain regions of a monoclonal antibody (D3H5) binding specifically to misfolded SOD1. A single intrathecal injection of the AAV encoding the single-chain antibody in SOD1G93A mice at 45 days of age resulted in sustained expression of single-chain antibodies in the spinal cord, and it delayed disease onset and extension of life span by up to 28%, in direct correlation with scFv titers in the spinal cord. The treatment caused attenuation of neuronal stress signals and reduction in levels of misfolded SOD1 in the spinal cord of SOD1G93A mice. From these results, we propose that an immunotherapy based on intrathecal inoculation of AAV encoding a secretable scFv against misfolded SOD1 should be considered as potential treatment for ALS, especially for individuals carrying SOD1 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.