Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders. S chizophrenia (SCZ) is a chronic psychiatric disorder characterized by a profound disruption in cognition, behavior, and emotion which begins in adolescence or early adulthood. There is significant clinical variability among SCZ patients, suggesting that it is etiologically heterogeneous. There are several hypotheses to explain genetic factors underlying SCZ, such as polygenic inheritance (1) or, in a fraction of cases, variably penetrant de novo mutations. The de novo hypothesis is based on several observations. One is that relatives of an individual with SCZ have a higher risk of being affected (parents 6%, offspring 13%, and siblings 9% compared with 1% for the general population) (2). The greater frequency in offspring than in parents may occur if new mutations account for a fraction of SCZ cases. Also, there is a significantly increased risk of SCZ with increasing paternal age (3), which could result from the age-related increase in paternal de novo mutations. Furthermore, despite reduced reproductive fitness (4) and extremely variable environmental factors, the incidence of SCZ is maintained at ∼1% worldwide. Interestingly, recent studies reported de novo copy-number variants in SCZ, providing further support for the de novo mutation hypothesis (5, 6).As part of the Synapse to Disease (S2D) project aimed at exploring the de novo mutation hypothesis in brain diseases, we are sequencing synaptic genes in individuals with SCZ and autism spectrum disorder (ASD), two neurodevelopmental disorders. Recently, mutations in the SHANK3 (SH3 and multiple ankyrin repeat domains 3) gene, encoding a scaffolding protein abundant in the postsynaptic density of excitatory synapses on dendritic spines, were found in patients with ASD (7-9). Considering that ASD and SCZ share some features, we decided to screen the SHANK3 gene in our cohort of SCZ probands. Given our hypothesis that a significant fraction of SCZ cases are the result of new mutations, we selected SCZ cases with unaffected parents and screened for de novo mutations.
Growing genetic evidence is converging in favor of common pathogenic mechanisms for autism spectrum disorders (ASD), intellectual disability (ID or mental retardation) and schizophrenia (SCZ), three neurodevelopmental disorders affecting cognition and behavior. Copy number variations and deleterious mutations in synaptic organizing proteins including NRXN1 have been associated with these neurodevelopmental disorders, but no such associations have been reported for NRXN2 or NRXN3. From resequencing the three neurexin genes in individuals affected by ASD (n = 142), SCZ (n = 143) or non-syndromic ID (n = 94), we identified a truncating mutation in NRXN2 in a patient with ASD inherited from a father with severe language delay and family history of SCZ. We also identified a de novo truncating mutation in NRXN1 in a patient with SCZ, and other potential pathogenic ASD mutations. These truncating mutations result in proteins that fail to promote synaptic differentiation in neuron coculture and fail to bind either of the established postsynaptic binding partners LRRTM2 or NLGN2 in cell binding assays. Our findings link NRXN2 disruption to the pathogenesis of ASD for the first time and further strengthen the involvement of NRXN1 in SCZ, supporting the notion of a common genetic mechanism in these disorders.
The oceans globally constitute an important sink for carbon dioxide (CO2) due to phytoplankton photosynthesis. However, the marine environment imposes serious restraints to carbon fixation. First, the equilibrium between CO2 and bicarbonate (HCO3 −) is pH dependent, and, in normal, slightly alkaline seawater, [CO2] is typically low (approximately 10 μ m). Second, the rate of CO2 diffusion in seawater is slow, so, for any cells unable to take up bicarbonate efficiently, photosynthesis could become carbon limited due to depletion of CO2 from their immediate vicinity. This may be especially problematic for those dinoflagellates using a form II Rubisco because this form is less oxygen tolerant than the usually found form I enzyme. We have identified a carbonic anhydrase (CA) from the free-living marine dinoflagellate Lingulodinium polyedrum that appears to play a role in carbon acquisition. This CA shares 60% sequence identity with δ-class CAs, isoforms so far found only in marine algae. Immunoelectron microscopy indicates that this enzyme is associated exclusively with the plasma membrane. Furthermore, this enzyme appears to be exposed to the external medium as determined by whole-cell CA assays and vectorial labeling of cell surface proteins with 125I. The fixation of 14CO2 is strongly pH dependent, suggesting preferential uptake of CO2 rather than HCO3 −, and photosynthetic rates decrease in the presence of 1 mm acetazolamide, a non-membrane-permeable CA inhibitor. This constitutes the first CA identified in the dinoflagellates, and, taken together, our results suggest that this enzyme may help to increase CO2 availability at the cell surface.
Angiostatin is a potent inhibitor of angiogenesis. One mechanism through which angiostatin inhibits angiogenesis is by binding to the cell surface protein p80-angiomotin. The p80-angiomotin protein promotes angiogenesis, in part, by conferring a hypermigratory phenotype to endothelial cells. Although p80-angiomotin is extensively characterized, less is known about the related protein angiomotin-like 1. We report that angiomotin-like 1 forms part of a protein complex containing p80-angiomotin. Structure-function studies revealed that angiomotin-like 1 associates with this p80-angiomotin-containing complex via its coiled-coil domain. Since p80-angiomotin plays a role in cell migration, a process that involves the remodeling of the actin cytoskeleton, we then addressed the hypothesis that angiomotin-like 1 may interact with the cytoskeleton. Immunofluorescence studies reveal that angiomotin-like 1 not only co-localizes with filamentous actin but also significantly modifies the architecture of the actin cytoskeleton. Regarding migration, angiomotin-like 1 increases the velocity of migration and decreases the persistence of migration directionality. Together these observations strongly suggest that angiomotin-like 1 is involved in actin-cytoskeleton-based processes, in part, via its interaction with a p80-angiomotin-containing complex and the actin cytoskeleton. These findings have important implications for angiogenesis-driven disease since angiomotin and angiomotin-like 1 are both expressed in capillaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.