A link between structural ordering and slow dynamics has recently attracted much attention from the context of the origin of glassy slow dynamics. Candidates for such structural order are icosahedral, exotic amorphous and crystal-like. Each type of order is linked to a different scenario of glass transition. Here we experimentally access local structural order in polydisperse hard spheres by particle-level confocal microscopy. We identify the key structures as icosahedral and FCC-like order, both statistically associated with slow particles. However, when approaching the glass transition, the icosahedral order does not grow in size, whereas crystal-like order grows. It is the latter that governs the dynamics and is linked to dynamic heterogeneity. This questions the direct role of the local icosahedral ordering in glassy slow dynamics and suggests that the growing length scale of structural order is essential for the slowing down of dynamics and the non-local cooperativity in particle motion.
Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a protein gel is reminiscent of brittle solids: after a primary creep regime characterized by a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids.PACS numbers: 82.35. Pq, 47.57.Qk, 83.80.Kn Biogels formed through the self-association of polysaccharide coils, collagen, actin filaments or attractive globular proteins play a major role in biochemistry and microbiology [1], biological networks and cell mechanics [2] as well as in food science [3]. These biomaterials all behave as elastic solids under small deformations but display remarkable nonlinear behavior generally featuring stress-or strain-stiffening [4] and fractures prior to irreversible rupture [5,6]. Irreversibility stems from the existence of an external control parameter, e.g. temperature or pH in the case of thermoreversible or acid-induced gels respectively. This makes such biogels fundamentally different from other soft glassy materials such as emulsions, colloidal gels and glasses that can be rejuvenated by shear [7][8][9][10] or transient networks where fractures spontaneously heal [11,12]. So far, huge effort has been devoted to the design of protein gels with specific properties and textures at rest [13,14]. However, their mechanical behavior deep into the nonlinear regime has only been partially addressed [15,16] and several fundamental issues remain unexplored such as the spatially resolved rupture scenario or the physical relevance of the analogy with brittle failure in hard solids.In this Letter we report on stress-induced fracture in protein gels by means of creep experiments coupled to optical and ultrasonic imaging. Gels formed by slow acidification of a sodium caseinate solution display fractures under large strain at fixed low pH values [15,17], which makes them perfect candidates to quantify the rupture of soft solids and tackle the above-mentioned issues. We demonstrate that under an external load, these casein gels display brittle-like failure that results from two successive physical processes: (i) a primary creep regime where dissipation is dominated by viscous flow through the gel matrix without any detectable macroscopic strain localization and (ii) the irreversible nucle-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.