Lithium-ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation because of the extremely large gravimetric and volumetric capacity of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link structure in these systems with electrochemical performance. We apply a combination of static, in situ and magic angle sample spinning, ex situ (7)Li nuclear magnetic resonance (NMR) studies to investigate the changes in local structure that occur in an actual working LIB. The first discharge occurs via the formation of isolated Si atoms and smaller Si-Si clusters embedded in a Li matrix; the latter are broken apart at the end of the discharge, forming isolated Si atoms. A spontaneous reaction of the lithium silicide with the electrolyte is directly observed in the in situ NMR experiments; this mechanism results in self-discharge and potential capacity loss. The rate of this self-discharge process is much slower when CMC (carboxymethylcellulose) is used as the binder.
Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems with electrochemical performance. We apply a combination of local structure probes, ex situ (7)Li nuclear magnetic resonance (NMR) studies, and pair distribution function (PDF) analysis of X-ray data to investigate the changes in short-range order that occur during the initial charge and discharge cycles. The distinct electrochemical profiles observed subsequent to the first discharge have been shown to be associated with the formation of distinct amorphous lithiated silicide structures. For example, the first process seen on the second discharge is associated with the lithiation of the amorphous Si, forming small clusters. These clusters are broken in the second process to form isolated silicon anions. The (de)lithiation model helps explain the hysteresis and the steps in the electrochemical profile observed during the lithiation and delithiation of silicon.
To better understand the factors responsible for the poor electrochemical performances of the olivine-type LiMnPO 4 , various experiments such as chemical delithiation, galvanostatic charge and discharge, cyclic voltamperometry, and impedance conductivity, were carried out on both LiFePO 4 and LiMnPO 4 . Chemical delithiation experiments confirmed a topotactic two-phase electrochemical mechanism between LiMnPO 4 and the fully delithiated phase MnPO 4 ͑a = 5.909͑5͒ Å, b = 9.64͑1͒ Å, and c = 4.768͑6͒ Å͒. We conclude that the limiting factor in the MnPO 4 /LiMnPO 4 electrochemical reaction is nested mostly in the ionic and/or electronic transport within the LiMnPO 4 particles themselves rather than in charge transfer kinetics or structural instability of the MnPO 4 phase. For instance, the electrical conductivity of LiMnPO 4 ͑ ϳ 3.10 −9 S cm −1 at 573 K, ⌬E ϳ 1.1 eV͒ was found to be several orders of magnitude lower than that of LiFePO 4 ͑ ϳ 10 −9 S cm −1 at 298 K, ⌬E ϳ 0.6 eV͒.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.