The Paleoproterozoic Francevillian succession of Gabon has figured prominently in concepts about Earth’s early oxygenation and genesis of a large positive excursion in carbon-isotope values, the Lomagundi-Jatuli event (LJE). Here we present a detailed study of a 139-m-long core of Francevillian rocks marked by carbonate δ13C (δ13Ccarb) values of 5‰–9‰ that decline upsection to near 0‰, a trend inferred by many workers as a fingerprint of the LJE and its termination. However, we show that the shift in δ13Ccarb values coincides with a facies change: shallow-marine facies are marked by the strongly positive values, whereas deeper-marine facies (below storm wave base) are at ~0‰. The most circumspect interpretation of such facies dependence of δ13Ccarb is that shallow-marine settings record the isotope effects of local physical and biochemical processes driving the ambient dissolved inorganic carbon (DIC) pool to heavier values, and the lighter values (~0‰) in deeper-water facies track the DIC of the open-marine realm where δ13C was largely unaffected by fractionations occurring in shallow-water settings. Further, a transgressing redoxcline created conditions for precipitation of Mn-bearing minerals and chemotrophic microbial biota, including methane cycling communities evident by organic δ13C (δ13Corg) values of –4‰ and Δδcarb-org values as high as 46‰. Thus, the Francevillian C-isotope profile reflects basin-specific conditions and is not a priori an indicator of global C-cycle disturbances nor of the termination of the LJE.
The Palaeoproterozoic Lomagundi-Jatuli Event (LJE) is generally considered the largest, in both amplitude and duration, positive carbonate C-isotope (δ13Ccarb) excursion in Earth history. Conventional thinking is that it represents a global perturbation of the carbon cycle between 2.3–2.1 Ga linked directly with and in part causing the postulated rise in atmospheric oxygen during the Great Oxidation Event. In addition to new high-resolution δ13Ccarb measurements from LJE-bearing successions of NW Russia, we compiled 14,943 δ13Ccarb values obtained from marine carbonate rocks 3.0–1.0 Ga in age and from selected Phanerozoic time intervals as a comparator of the LJE. Those data integrated with sedimentology show that, contra to consensus, the δ13Ccarb trend of the LJE is facies (i.e. palaeoenvironment) dependent. Throughout the LJE interval, the C-isotope composition of open and deeper marine settings maintained a mean δ13Ccarb value of +1.5 ± 2.4‰, a value comparable to those settings for most of Earth history. In contrast, the 13C-rich values that are the hallmark of the LJE are limited largely to nearshore-marine and coastal-evaporitic settings with mean δ13Ccarb values of +6.2 ± 2.0‰ and +8.1 ± 3.8‰, respectively. Our findings confirm that changes in δ13Ccarb are linked directly to facies changes and archive contemporaneous DIC pools having variable C-isotopic compositions in laterally adjacent depositional settings. The implications are that the LJE cannot be construed a priori as representative of the global carbon cycle or a planetary-scale disturbance to that cycle, nor as direct evidence for oxygenation of the ocean-atmosphere system. This requires rethinking models relying on those concepts and framing new ideas in the search for understanding the genesis of the grandest of all positive C-isotope excursions, its timing and its hypothesised linkage to oxygenation of the atmosphere.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5471815
U-Pb ages obtained from detrital zircon from terrigenous sediments are used to determine the sources. Present fluvial sand-bars of the Ogooue river yield age spectra of detrital zircons in agreement with Archean and Early Proterozoic Sources found in the drainage. The large proportion of Late Proterozoic zircons cannot be derived from primary erosion of the watershed basement rocks, since there is no formation of that age in the area. This later group of zircons is in good agreement with reworking of the aeolian Paleogene Bateke Sands, by regressive erosion in the upper reaches of the Ogooue river, as they contain a majority of Late Proterozoic age zircons. The sources of Late Proterozoic zircons in the Bateke Sand are very distant, and transported and reworked - at least in part - by aeolian processes. Our results, together with the widely distributed Paleogene sediments over continental Africa, suggests that Paleogene was it time of subdued erosion of the cratonic areas and extensive reworking, transport and deposition within continental Africa. In contrast, our results from the Ogooue river indicate active present incision of the cratonic area, erosion of the previous continental sediments, and export of the river bed-load to the continental margin. This temporal evolution of erosion-transport-deposition is correlated with the drastic climate change that occurred during the Cenozoic, leading to a more efficient mechanical erosion, and it correlates with the increase of terrigenous flux to the margin, observed during the Neogene
The ~2.22–2.06 Ga Lomagundi Event was the longest positive carbon isotope excursion in Earth’s history and is commonly interpreted to reflect perturbations in continental weathering and the phosphorous cycle. Previous models have focused on mechanisms of increasing phosphorous solubilization during weathering without focusing on transport to the oceans and its dispersion in seawater. Building from new experimental results, here we report kaolinite readily absorbs phosphorous under acidic freshwater conditions, but quantitatively releases phosphorous under seawater conditions where it becomes bioavailable to phytoplankton. The strong likelihood of high weathering intensities and associated high kaolinite content in post-Great-Oxidation-Event paleosols suggests there would have been enhanced phosphorus shuttling from the continents into marine environments. A kaolinite phosphorous shuttle introduces the potential for nonlinearity in the fluxes of phosphorous to the oceans with increases in chemical weathering intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.