This work explores the importance of renewable resource temporal distribution for solar and wind energy deployment in Arctic communities to meet building and ancillary loads. An analysis of ten years of historic weather data was performed for six locations in the Canadian Arctic to assess renewable resource variation. Simulations of similar capacity solar and wind generation systems were then coupled with the historic data to compare and contrast generation potential. This analysis highlighted the importance of considering hourly, daily, monthly, and year-to-year renewable generation when deploying solar and wind to the Arctic. As many northern communities in Canada have local electricity generation and distribution systems, and no connection to the continental grid, managing grid interactions effectively is crucial to the success of deployment, integration, and operation. The results for the solar energy analysis showed high consistency of production year-to-year. The results for the wind energy analysis showed that the annual outputs have significantly less variation than the year-to-year output of individual months for all the locations under study. For the high latitude locations studied, solar energy can still provide useful electricity generation output, but the more pronounced bias of the annual output to the summer months can leave several months with little or no output. The use of additional renewable sources is crucial in beginning to transition some electricity generating capacity within Arctic communities from being solely reliant on fossil fuels.
Air-to-air heat/energy recovery ventilators can effectively reduce the cost associated with ventilating a home. However, high indoor moisture levels, in conjunction with extreme temperature differences between the outdoor and indoor air can cause frost accumulation in the mechanical equipment, leading to performance degradation or failure. In this research, a demonstration house using a heat recovery ventilation system in Iqaluit, Nunavut, Canada was used to compare the performance of two frost control techniques: recirculation and electrical preheat. The advantages and disadvantages of each method are outlined to highlight the need to adapt southern strategies to ensure system functionality in the Arctic. The system was equipped with a heat recovery ventilator (HRV) with built-in recirculation technology to defrost the HRV, as well as two electric preheaters that can be used instead of recirculation and prevent frost formation. Between December 2018 and April 2019 the ventilation system’s performance was monitored for seven weeks while using either recirculation or electrical preheat. The experiments showed the ventilation system equipment consumed more absolute energy with electrical preheat than with recirculation as the frost control technique. However, when using recirculation, the ventilation system experienced more losses throughout the ventilation system, causing the whole building to consume more energy due to an increase in energy consumption by the home’s heating system. Moreover, the quantity of outdoor air that was restricted while using recirculation made electrical preheat the superior option for this ventilation system design. The energy use of the ventilation system with electric preheat enabled was 35% lower on a per volume of outdoor air basis. Contrary to some belief that preheating is a poor approach for frost control in heat/energy recovery ventilators, this research finds that preheating can be a more energy efficient method to provide ventilation if controlled well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.