Aims
Heart failure is a major complication in cancer treatment due to the cardiotoxic effects of anticancer drugs, especially from the anthracyclines such as doxorubicin (DXR). DXR enhances oxidative stress and stimulates matrix metalloproteinase-2 (MMP-2) in cardiomyocytes. We investigated whether MMP inhibitors protect against DXR cardiotoxicity given the role of MMP-2 in proteolyzing sarcomeric proteins in the heart and remodelling the extracellular matrix.
Methods and results
Eight-week-old male C57BL/6J mice were treated with DXR weekly with or without MMP inhibitors doxycycline or ONO-4817 by daily oral gavage for 4 weeks. Echocardiography was used to determine cardiac function and left ventricular remodelling before and after treatment. MMP inhibitors ameliorated DXR-induced systolic and diastolic dysfunction by reducing the loss in left ventricular ejection fraction, fractional shortening, and E′/A′. MMP inhibitors attenuated adverse left ventricular remodelling, reduced cardiomyocyte dropout, and prevented myocardial fibrosis. DXR increased myocardial MMP-2 activity in part also by upregulating N-terminal truncated MMP-2. Immunogold transmission electron microscopy showed that DXR elevated MMP-2 levels within the sarcomere and mitochondria which were associated with myofilament lysis, mitochondrial degeneration, and T-tubule distention. DXR-induced myofilament lysis was associated with increased titin proteolysis in the heart which was prevented by ONO-4817. DXR also increased the level and activity of MMP-2 in human embryonic stem cell-derived cardiomyocytes, which was reduced by ONO-4817.
Conclusions
MMP-2 activation is an early event in DXR cardiotoxicity and contributes to myofilament lysis by proteolyzing cardiac titin. Two orally available MMP inhibitors ameliorated DXR cardiotoxicity by attenuating intracellular and extracellular matrix remodelling, suggesting their use may be a potential prophylactic strategy to prevent heart injury during chemotherapy.
Anthracyclines, such as doxorubicin, are commonly prescribed antineoplastic agents that cause irreversible cardiac injury. Doxorubicin cardiotoxicity is initiated by increased oxidative stress in cardiomyocytes. Oxidative stress enhances intracellular matrix metalloproteinase-2 (MMP-2) by direct activation of its full-length isoform and (or) de novo expression of an N-terminal-truncated isoform (NTT-MMP-2). As MMP-2 is localized to the sarcomere, we tested whether doxorubicin activates intracellular MMP-2 in neonatal rat ventricular myocytes (NRVM) and whether it thereby proteolyzes two of its identified sarcomeric targets, α-actinin and troponin I. Doxorubicin increased oxidative stress within 12 h as indicated by reduced aconitase activity. This was associated with a twofold increase in MMP-2 protein levels and threefold higher gelatinolytic activity. MMP inhibitors ARP-100 or ONO-4817 (1 μM) prevented doxorubicin-induced MMP-2 activation. Doxorubicin also increased the levels and activity of MMP-2 secreted into the conditioned media. Doxorubicin upregulated the mRNA expression of both full-length MMP-2 and NTT-MMP-2. α-Actinin levels remained unchanged, whereas doxorubicin downregulated troponin I in an MMP-independent manner. Doxorubicin induces oxidative stress and stimulates a robust increase in MMP-2 expression and activity in NRVM, including NTT-MMP-2. The sarcomeric proteins α-actinin and troponin I are, however, not targeted by MMP-2 under these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.