Background Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). Objectives To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials.
In this study, we present long-term results from patients with medial temporal lobe (MTL) epilepsy treated with deep brain stimulation (DBS). Since 2001, 11 patients (8M) with refractory MTL epilepsy underwent MTL DBS. When unilateral DBS failed to decrease seizures by > 90%, a switch to bilateral MTL DBS was proposed. After a mean follow-up of 8.5 years (range: 67-120 months), 6/11 patients had a ≥ 90% seizure frequency reduction with 3/6 seizure-free for > 3 years; three patients had a 40%-70% reduction and two had a < 30% reduction. In 3/5 patients switching to bilateral DBS further improved outcome. Uni- or bilateral MTL DBS did not affect neuropsychological functioning. This open study with an extended long-term follow-up demonstrates maintained efficacy of DBS for MTL epilepsy. In more than half of the patients, a seizure frequency reduction of at least 90% was reached. Bilateral MTL DBS may herald superior efficacy in unilateral MTL epilepsy.
Background Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. Since the 1970s interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). This is an updated version of a previous Cochrane review published in 2014. Objectives To assess the efficacy, safety and tolerability of DBS and cortical stimulation for refractory epilepsy based on randomized controlled trials (RCTs).
See Lenck-Santini (doi:) for a scientific commentary on this
article. Using population recordings in two rat models of chronic temporal lobe epilepsy, Neumann,
Raedt et al. show that ictal spikes are accompanied by characteristic
sequential patterns of neuronal activity. The neurons that are strongly activated during
ictal events are predominantly fast-spiking interneurons, and not excitatory principal
cells as previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.