Myopia is an ophthalmic condition affecting more than 1/5th of the world population, especially children. Low-dose atropine eyedrops have been shown to limit myopia evolution during treatment. However, there are currently no commercial industrial forms available and there is little data published concerning the stability of medications prepared by compounding pharmacies. The objective of this study was to evaluate the stability of two 0.1 mg/mL atropine formulations (with and without antimicrobiobial preservatives) for 6 months in two different low-density polyethylene (LDPE) multidose eyedroppers. Analyses used were the following: visual inspection, turbidity, chromaticity measurements, osmolality and pH measurements, atropine quantification by a stability-indicating liquid chromatography method, breakdown product research, and sterility assay. In an in-use study, atropine quantification was also performed on the drops emitted from the multidose eyedroppers. All tested parameters remained stable during the 6 months period, with atropine concentrations above 94.7% of initial concentration. A breakdown product (tropic acid) did increase slowly over time but remained well below usually admitted concentrations. Atropine concentrations remained stable during the in-use study. Both formulations of 0.1 mg/mL of atropine (with and without antimicrobial preservative) were proved to be physicochemically stable for 6 months at 25 °C when stored in LDPE bottles, with an identical microbial shelf-life.
BackgroundPolyhexamethylene biguanide (PHMB) eye drops are a frequently used medication to treat Acanthamoeba keratitis. In the absence of marketed PHMB eye drops, pharmacy-compounding units are needed to prepare this much needed treatment, but the lack of validated PHMB stability data severely limits their conservation by imposing short expiration dates after preparation. In this study we aim to assess the physicochemical and microbiological stability of a 0.2 mg/mL PHMB eye drop formulation stored in two kinds of polyethylene bottles at two different temperatures.MethodsA liquid chromatography coupled with diode array detector stability-indicating method was validated to quantify PHMB, using a cyanopropyl bonded phase (Agilent Zorbax Eclipse XDB-CN column 4.6 × 75 mm with particle size of 3.5 μm) and isocratic elution consisting of acetonitrile/deionized water (3/97 v/v) at a flow rate of 1.3 mL/min. PHMB eye drops stability was assessed for 90 days of storage at 5 and 25 °C in ethylene oxide sterilized low density polyethylene (EOS-LDPE) and gamma sterilized low density polyethylene (GS-LDPE) bottles. The following analyses were performed: visual inspection, PHMB quantification and breakdown products (BPs) screening, osmolality and pH measurements, and sterility assessment. PHMB quantification and BP screening was also performed on the drops emitted from the multidose eyedroppers to simulate in-use condition.ResultsThe analytical method developed meets all the qualitative and quantitative criteria for validation with an acceptable accuracy and good linearity, and is stability indicating. During 90 days of storage, no significant decrease of PHMB concentration was found compared to initial concentration in all stored PHMB eye drops. However, BP were found at day 30 and at day 90 of monitoring in both kind of bottles, stored at 5 and 25 °C, respectively. Although no significant variation of osmolality was found and sterility was maintained during 90 days of monitoring, a significant decrease of pH in GS-LDPE PHMB eye drops was noticed reaching 4 and 4.6 at 25 °C and 5 °C respectively, compared to initial pH of 6.16.DiscussionAlthough no significant decrease in PHMB concentration was found during 90 days of monitoring in all conditions, the appearance of BPs and their unknown toxicities let us believe that 0.2 mg/mL PHMB solution should be conserved for no longer than 60 days in EOS-LDPE bottles at 25 °C.
Fungal keratitis is a sight-threatening disease for which amphotericin B eye drops is one of the front-line treatments. Unfortunately, there are currently no commercial forms available, and there is little data concerning the long-term stability of compounded formulations based on intravenous dosages forms. New formulations of amphotericin B ophthalmic solutions solubilised with γ-cyclodextrins have shown promising in-vitro results, but stability data is also lacking. The objective of this study was therefore to investigate the stability of a formulation of ready-to-use amphotericin B solubilised in 2-hydroxypropyl-γ-cyclodextrins (AB-HP-γ-CD), for 350 days. An amphotericin B deoxycholate (ABDC) formulation was used as a comparator. Analyses used were the following: visual inspection, turbidity, osmolality and pH measurements, amphotericin B quantification by a stability-indicating liquid chromatography method, breakdown product research, and sterility assay. AB-HP-γ-CD formulation showed signs of chemical instability (loss of amphotericin B) after 28 and 56 days at 25 °C and 5 °C. Adding an antioxidant (ascorbic acid) to the formulation did not improve stability. ABDC formulation showed signs of physical instability (increased turbidy and amphotericin B precipitation) after 28 days and 168 days at 25 °C and 5 °C. As such, AB-HP-γ-CD formulation does not provide long-term stability for ophthalmic amphotericin B solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.