Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the COVID-19 pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. While the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of population dynamics.
Most mountain belts on Earth show some degree of curvature in plan view, from a slight bend to horseshoe shapes. Such curvatures may occur on different scales, from individual thrust sheets to entire plate boundaries. Curvature may be acquired by vertical-axis rotation during or after orogenesis, or reflect primary lateral variations in shortening directions or physiographical features. Quantifying the amount of vertical-axis rotations of plan-view curvature is therefore helpful to our understanding of orogenesis, geodynamics, and paleogeography. The orocline test assesses to what extent vertical-axis rotations have played a role in the acquisition of an orogen's curvature. The test quantifies through linear regression the relationships between changes in structural trends and the orientations of a geologic fabric. However, the current mathematical approaches to the orocline test show potential biases. In this paper we aim to overcome such biases by developing a novel orocline test that applies total least squares (TLS) regression combined with a novel approach to bootstrapping. This bootstrap TLS orocline test can be used with all types of directional data acquired from structural geology, paleomagnetism, or sedimentology. It quantifies, for the first time, secondary curvature with confidence bands. We also provide several graphical and analytical tests to evaluate the statistical significance of the result. An open source online application implementing this method is available for use on www.paleomagnetism.org. We illustrate the use of the methodology by reanalyzing published data sets from two well-known oroclines in the Cantrabrian (northwest Iberia) and Aegean (Greece) regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.