JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. abstract: Social animals can greatly benefit from well-developed social skills. Because the frequency and diversity of social interactions often increase with the size of social groups, the benefits of advanced social skills can be expected to increase with group size. Variation in social skills often arises during ontogeny, depending on early social experience. Whether variation of social-group sizes affects development of social skills and related changes in brain structures remains unexplored. We investigated whether, in a cooperatively breeding cichlid, early group size (1) shapes social behavior and social skills and (2) induces lasting plastic changes in gross brain structures and (3) whether the development of social skills is confined to a sensitive ontogenetic period. Rearing-group size and the time juveniles spent in these groups interactively influenced the development of social skills and the relative sizes of four main brain regions. We did not detect a sensitive developmental period for the shaping of social behavior within the 2-month experience phase. Instead, our results suggest continuous plastic behavioral changes over time. We discuss how developmental effects on social behavior and brain architecture may adaptively tune phenotypes to their current or future environments.
The social environment encountered early during development can temporarily or permanently influence life history decisions and behaviour of individuals and correspondingly shape molecular pathways. In the highly social cichlid fish Neolamprologus pulcher, deprivation of brood care permanently affects social behaviour and alters the expression of stress axis genes in juveniles and adults. It is unclear when gene expression patterns change during early life depending on social experience, and which genes are involved. We compared brain gene expression of N. pulcher at two time points during the social experience phase when juveniles were reared either with or without brood care, and one time point shortly afterwards. We compared (a) whole transcriptomes and (b) expression of 79 genes related to stress regulation, in order to define a neurogenomic state of stress for each fish. At developmental day 75, that is, after the social experience phase, 43 genes were down‐regulated in fish having experienced social deprivation, while two genes involved in learning and memory and in post‐translational modifications of proteins (PTM), respectively, were up‐regulated. Down‐regulated genes were mainly associated with immunity, PTM and brain function. In contrast, during the experience phase no genes were differentially expressed when assessing the whole transcriptome. When focusing on the neurogenomic state associated with the stress response, we found that individuals from the two social treatments differed in how their brain gene expression profiles changed over developmental stages. Our results indicate that the early social environment influences the transcriptional activation in fish brains, both during and after an early social experience, possibly affecting plasticity, immune system function and stress axis regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.