Process mining techniques use event logs containing real process executions in order to mine, align and extend process models. The partition of an event log into trace variants facilitates the understanding and analysis of traces, so it is a common pre-processing in process mining environments. Trace clustering automates this partition; traditionally it has been applied without taking into consideration the availability of a process model. In this paper we extend our previous work on process model based trace clustering, by allowing cluster centroids to have a complex structure, that can range from a partial order, down to a subnet of the initial process model. This way, the new clustering framework presented in this paper is able to cluster together traces that are distant only due to concurrency or loop constructs in process models. We show the complexity analysis of the different instantiations of the trace clustering framework, and have implemented it in a prototype tool that has been tested on different datasets.
Conformance checking strongly relies on the computation of artefacts, which enable reasoning on the relation between observed and modeled behavior. This paper shows how important conformance artefacts like alignments, antialignments or even multi-alignments, defined over the edit distance, can be computed by encoding the problem as a SAT instance. From a general perspective, the work advocates for a unified family of techniques that can compute conformance artefacts in the same way. The prototype implementation of the techniques presented in this paper show capabilities for dealing with some of the current benchmarks, and potential for the near future when optimizations similar to the ones in the literature are incorporated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.