In this work, is presented an empirical correlation on the thermal conductivity of the Lennard-Jones fluid based on extensive non-equilibrium molecular dynamics simulations results (103 points). Finite size and cutoff radius effects are investigated and taken into account to develop the correlation. This last, composed of low density, residual and critical enhancement contributions, is built for a wide range of thermodynamics states, even at the vicinity of the critical point, and yields an average absolute deviation of 1.29 % compared to our simulations. In addition, a careful analysis of the different contributions to the microscopic flux is carried out which sheds light on the underlying mechanism of the results. Finally, are discussed the limitations of the proposed model when applied to real simple fluids and mixtures using a standard corresponding states scheme and the van der Waals one-fluid approximation.2
In this work, we use an hybrid atomisticcontinuum (HAC) simulation method to study transient and steady isothermal flows of Lennard-Jones fluids near interfaces. Our hybrid method is based on a domain decomposition algorithm. The flow domain is composed of two overlapping regions: an atomistic region described by molecular dynamics, and a continuum region described by a finite volume discretization of the incompressible NavierStokes equations. To show the interest of such an hybrid method to compute flows near fluid/solid interface, we first applied our hybrid scheme to the classical Couette flow, where the moving wall is modelled at the atomistic scale. In addition, we also studied an oscillatory shear flow. Then, to compute flows near fluid/fluid interface, we applied our method to a two-phase Couette flow (liquid/gas), where the interface is modelled at the molecular scale. We show that hybrid results can sometimes differ from those provided by analytical solutions deduced from continuum mechanics equations combined with usual boundary/interface relations. For the Couette and oscillatory shear flows, a good agreement is found between hybrid simulations and macroscopic analytical solutions, however, we noticed that the fluid in contact with the wall can be more entailed than what expected. For the liquid/gas Couette flow, the hybrid simulation exhibits an unexpected jump of the velocity in the interfacial region, corresponding to a partial slip between the two fluid phases. Those interesting results highlight the interest of using an HAC method to deal with systems for which surfaces/interfaces effects are important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.