Mutations in SOX10, a transcription modulator crucial in the development of the enteric nervous system (ENS), melanocytes and glial cells, are found in Shah-Waardenburg syndrome (WS4), a neurocristopathy that associates intestinal aganglionosis, pigmentation defects and sensorineural deafness. Expression of MITF and RET, two genes that play important roles during melanocyte and ENS development, respectively, are controlled by SOX10. The observation that some WS4 patients present with myelination defects of the central and peripheral nervous systems correlates with the recent finding that P(0), a major component of the peripheral myelin, is another transcriptional target of SOX10. These phenotypic features suggest that SOX10 could regulate expression of other genes involved in the myelination process as well. Thus, we tested the ability of SOX10 to regulate expression of MBP, PMP22 and Connexin 32, three major proteins of the peripheral myelin. Our study shows that this factor, in synergy with EGR2, strongly activates Cx32 expression in vitro by directly binding to its promoter. In agreement with this finding, SOX10 and EGR2 mutants identified in patients with peripheral myelin defects fail to transactivate the Cx32 promoter. Moreover, we show that a mutation of the Cx32 promoter previously described in a patient with the X-linked form of Charcot-Marie-Tooth (CMTX) disease impairs SOX10 function. In addition to providing new insights into the molecular mechanisms underlying some of the peripheral myelin defects observed in CMTX disease, these results further extend the spectrum of genes that are regulated by SOX10.
Use of clinical-grade human induced pluripotent stem cell (iPSC) lines as a starting material for the generation of cellular therapeutics requires demonstration of comparability of lines derived from different individuals and in different facilities. This requires agreement on the critical quality attributes of such lines and the assays that should be used. Working from established recommendations and guidance from the International Stem Cell Banking Initiative for human embryonic stem cell banking, and concentrating on those issues more relevant to iPSCs, a series of consensus workshops has made initial recommendations on the minimum dataset required to consider an iPSC line of clinical grade, which are outlined in this report. Continued evolution of this field will likely lead to revision of these guidelines on a regular basis.
One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS), who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.
Among the tools of regenerative medicine, induced pluripotent stem cells (iPSCs) are interesting because the donor genotype can be selected. The construction of banks of iPSC cell lines selected from human leukocyte antigen (HLA) homozygous donors has been proposed to be an effective way to match a maximal number of patients receiving cell therapy from iPSC lines. However, what effort would be required to constitute such a bank for a worldwide application has remained unexplored. We developed a probabilistic model to compute the number of donors to screen for constituting banks of best-chosen iPSC lines with homozygous HLA haplotypes (haplobanks) in four ancestry backgrounds. We estimated what percentage of the patients would be provided with single HLA haplotype matched cell lines. Genetic diversity leads to different outcomes for the four sets in all terms. A bank comprising iPSC lines representing the 20 most frequent haplotypes in each population would request quite different number of donors to screen, between 26,000 for European Americans and 110,000 for African Americans. It would also match different fractions of the recipient population, namely, more than 50% of the European Americans and 22% of African Americans. Conversely, a bank comprising the 100 iPSC lines with the most frequent HLA in each population would leave out only 22% of the European Americans, but 37% of the Asians, 48% of the Hispanics, and 55% of the African Americans. The constitution of a haplobank of iPSC lines is achievable through a large-scale concerted worldwide collaboration. STEM
Mutations in PARK2, encoding the E3 ubiquitin protein ligase Parkin, are a common cause of autosomal recessive Parkinson's disease (PD). Loss of PARK2 function compromises mitochondrial quality by affecting mitochondrial biogenesis, bioenergetics, dynamics, transport and turnover. We investigated the impact of PARK2 dysfunction on the endoplasmic reticulum (ER)-mitochondria interface, which mediates calcium (Ca) exchange between the two compartments and is essential for Parkin-dependent mitophagy. Confocal and electron microscopy analyses showed the ER and mitochondria to be in closer proximity in primary fibroblasts from PARK2 knockout (KO) mice and PD patients with PARK2 mutations than in controls. Ca flux to the cytosol was also modified, due to enhanced ER-to-mitochondria Ca transfers, a change that was also observed in neurons derived from induced pluripotent stem cells of a patient with PARK2 mutations. Subcellular fractionation showed the abundance of the Parkin substrate mitofusin 2 (Mfn2), which is known to modulate the ER-mitochondria interface, to be specifically higher in the mitochondrion-associated ER membrane compartment in PARK2 KO tissue. Mfn2 downregulation or the exogenous expression of normal Parkin restored cytosolic Ca transients in fibroblasts from patients with PARK2 mutations. In contrast, a catalytically inactive PD-related Parkin variant had no effect. Overall, our data suggest that Parkin is directly involved in regulating ER-mitochondria contacts and provide new insight into the role of the loss of Parkin function in PD development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.