This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
SummaryNatural killer (NK) cells are innate lymphoid cells (ILCs) involved in antimicrobial and antitumoral responses. Several NK cell subsets have been reported in humans and mice, but their heterogeneity across organs and species remains poorly characterized. We assessed the diversity of human and mouse NK cells by single-cell RNA sequencing on thousands of individual cells isolated from spleen and blood. Unbiased transcriptional clustering revealed two distinct signatures differentiating between splenic and blood NK cells. This analysis at single-cell resolution identified three subpopulations in mouse spleen and four in human spleen, and two subsets each in mouse and human blood. A comparison of transcriptomic profiles within and between species highlighted the similarity of the two major subsets, NK1 and NK2, across organs and species. This unbiased approach provides insight into the biology of NK cells and establishes a rationale for the translation of mouse studies to human physiology and disease.
Intestinal T cells and group 3 innate lymphoid cells (ILC3) control the composition of the microbiota and gut immune responses. Within the gut there coexists ILC3 subsets which either express or lack the Natural cytoxicity receptor (NCR) NKp46. We identify here the transcriptional signature associated with the T-bet-dependent differentiation of NCR− ILC3 into NCR+ ILC3. Contrary to the prevailing view, we show by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR+ ILC3 were redundant for the control of mouse colonic infections with Citrobacter rodentium in the presence of T cells. However, NCR+ ILC3 were essential for cecum homeostasis. Our data show that interplay between intestinal ILC3 and adaptive lymphocytes results in robust complementary fail-safe mechanisms ensuring gut homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.