<div> By mimicking the cutin natural polyester networks of plant cuticles, we produced hydrophobic elastomers by a sustainable process, i.e., using a catalyst- and solvent-free polycondensation of glycerol and hydroxy fatty acids, two by-products of the agro-food industry. The hydroxy fatty acid fraction was obtained by ethanolic alkaline hydrolysis of cuticle from industrial tomato. This industrial-like fatty acid fraction contained more than 90% wt. of 9(10)-16 dihydroxyhexadecanoic acid (diOHC16). The co-polyesters were designed by increasing the ratio of esterified glycerol/diOHC16 in a range observed in plant cutins (up to 6% wt.). Their structure and functional properties (thermal, mechanical, gas permeability, interaction with bacterial cells) were characterized. Increasing the glycerol contents induced a significant decrease in the crosslink density of the polyesters and the formation of crystalline domains with a hexagonal organization. These structural modifications were related to a marked increase of elastomeric extensibility (up to 217%). While water vapor permeability was not impacted, the increase of glycerol content induced a significant decrease in oxygen permeability. None of the polyesters displayed biocide activity, but an increase of glycerol content significantly reduced the adhesion of bacterial cells, potentially giving rise to antifouling applications. </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.