The impact of long-term exposure (6 months) to highly or slightly polluted sediments on the energy metabolism of an ecosystem engineer (the oligochaete Limnodrilus hoffmeisteri) was investigated in laboratory conditions. We evaluated some mitochondrial parameters (respiratory chain activity and ATP production rate) and the accumulation of anaerobic end-products (lactate, alanine, succinate, and propionate). The sediments were collected from stormwater infiltration basins and presented high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). These compounds had been drained by the runoff water on impervious surfaces of urban areas during rainfall events. A decrease in the activity of the mitochondrial electron transport chain was observed in worms exposed to the most polluted sediment. Urban contaminants disrupted both aerobic metabolism and mitochondrial functioning, forcing organisms to shift from aerobic to anaerobic metabolism (which is characteristic of a situation of functional hypoxia). Although L. hoffmeisteri is very tolerant to urban pollutants, long-term exposure to high concentrations can cause disruption in mitochondrial activity and therefore energy production. Finally, this study demonstrated that anaerobic end-products could be used as biomarkers to evaluate the impact of a mixture of urban pollutants on invertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.