Choosing the right mating partner is one of the most critical decisions in the life of a sexually reproducing organism and is the basis of sexual selection. This choice is usually assumed to be made by one or both of the sexual partners. Here, we describe a system in which a third party – the siblings – promote outbreeding by their sisters: workers of the tiny ant Cardiocondyla elegans carry female sexuals from their natal nest over several meters and drop them in the nest of another, unrelated colony to promote outbreeding with wingless, stationary males. Workers appear to choose particular recipient colonies into which they transfer numerous female sexuals. Assisted outbreeding and indirect female choice in the ant C. elegans are comparable to human matchmaking and suggest a hitherto unknown aspect of natural history – third party sexual selection. Our study highlights that research at the intersection between social evolution and reproductive biology might reveal surprising facets of animal behavior.
Workers of the ant Cardiocondyla elegans drop female sexuals into the nest entrance of other colonies to promote outbreeding with unrelated, wingless males. Corroborating results from previous years we document that carrier and carried female sexuals are typically related and that the transfer initially occurs mostly from their joint natal colonies to unrelated colonies. Female sexuals mate multiply with up to seven genetically distinguishable males. Contrary to our expectation, the colony growth rate of multiple-mated and outbred female sexuals was lower than that of inbred or single-mated females, leading to the question of why female sexuals mate multiply at all. Despite the obvious costs, multiple mating might be a way for female sexuals to “pay rent” for hibernation in an alien nest. We argue that in addition to evading inbreeding depression from regular sibling mating over many generations, assisted dispersal might also be a strategy for minimizing the risk of losing all reproductive investment when nests are flooded in winter.
Workers of the ant Cardiocondyla elegans drop female sexuals into the nest entrance of other colonies to promote outbreeding with unrelated, wingless males. Corroborating the results from previous years, we document that carrier and carried female sexuals are typically related and that the transfer initially occurs mostly from their joint natal colonies to unrelated colonies. Female sexuals mate multiply with up to seven genetically distinguishable males. Contrary to our expectation, the colony growth rate of multiple‐mated and outbred female sexuals was lower than that of inbred or single‐mated females, leading to the question of why female sexuals mate multiply at all. Despite the obvious costs, multiple mating might be a way for female sexuals to “pay rent” for hibernation in an alien nest. We argue that in addition to evade inbreeding depression from regular sibling mating over many generations, assisted dispersal might also be a strategy for minimizing the risk of losing all reproductive investment when nests are flooded in winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.