The long-term fate of uranium-contaminated sediments, especially downstream former mining areas, is a widespread environmental challenge. Essential for their management is the proper understanding of uranium (U) immobilization mechanisms in reducing environments. In particular, the long-term behavior of noncrystalline U(IV) species and their possible evolution to more stable phases in subsurface conditions is poorly documented, which limits our ability to predict U long-term geochemical reactivity. Here, we report direct evidence for the evolution of U speciation over 3,300 y in naturally highly U-enriched sediments (350–760 µg ⋅ g−1 U) from Lake Nègre (Mercantour Massif, Mediterranean Alps, France) by combining U isotopic data (δ238U and (234U/238U)) with U L3-edge X-ray absorption fine structure spectroscopy. Constant isotopic ratios over the entire sediment core indicate stable U sources and accumulation modes, allowing for determination of the impact of aging on U speciation. We demonstrate that, after sediment deposition, mononuclear U(IV) species associated with organic matter transformed into authigenic polymeric U(IV)–silica species that might have partially converted to a nanocrystalline coffinite (UIVSiO4·nH2O)-like phase. This diagenetic transformation occurred in less than 700 y and is consistent with the high silica availability of sediments in which diatoms are abundant. It also yields consistency with laboratory studies that proposed the formation of colloidal polynuclear U(IV)–silica species, as precursors for coffinite formation. However, the incomplete transformation observed here only slightly reduces the potential lability of U, which could have important implications to evaluate the long-term management of U-contaminated sediments and, by extension, of U-bearing wastes in silica-rich subsurface environments.
Delivery of suspended sediment from large rivers to marine environments has important environmental impacts on coastal zones. In France, the Rhone River (catchment area of 98,000 km(2)) is by far the main supplier of sediment to the Mediterranean Sea and its annual solid discharge is largely controlled by flood events. This study investigates the relevance of alternative and original fingerprinting techniques based on the relative abundances of a series of radionuclides measured routinely at the Rhone River outlet to quantify the relative contribution of sediment supplied by the main tributaries during floods. Floods were classified according to the relative contribution of the main subcatchments (i.e., Oceanic, Cevenol, extensive Mediterranean and generalised). Between 2000 and 2012, 221 samples of suspended sediment were collected at the outlet and were shown to be representative of all flood types that occurred during the last decade. Three geogenic radionuclides (i.e., (238)U, (232)Th and (40)K) were used as fingerprints in a multivariate mixing model in order to estimate the relative contribution of the main subcatchment sources-characterised by different lithologies-in sediment samples collected at the outlet. Results showed that total sediment supply originating from Pre-Alpine, Upstream, and Cevenol sources amounted to 10, 7 and 2.10(6)tons, respectively. These results highlight the role of Pre-Alpine tributaries as the main sediment supplier (53%) to the Rhone River during floods. Other fingerprinting approaches based on artificial radionuclide activity ratios (i.e., (137)Cs/(239+240)Pu and (238)Pu/(239+240)Pu) were tested and provided a way to quantify sediment remobilisation or the relative contributions of the southern tributaries. In the future, fingerprinting methods based on natural radionuclides should be further applied to catchments with heterogeneous lithologies. Methods based on artificial radionuclides should be further applied to catchments characterised by heterogeneous post-Chernobyl (137)Cs deposition or by specific releases of radioactive effluents.
Trace elements and organic carbon inputs to the Mediterranean Sea from an urbanised area (Marseille City) were studied and characterised during flood events. Inputs were brought to the sea by two small coastal rivers whose waters were mixed together and also with treated wastewaters (TWW) just before discharge. The monitoring of the rivers during flood events showed the high temporal dynamics of water flow, suspended particulate matter (SPM), organic carbon and trace metals concentrations, typical of small coastal Mediterranean rivers and requiring an appropriate sampling strategy. Dissolved/particulate partition coefficient (log Kd) in rivers during floods remained quasi-constant for a given trace element, but differed from one element to another according to their affinity toward particles. Because of high SPM concentrations, trace elements were mainly brought to the sea during floods as particles, despite a weaker affinity for particles when compared to baseflow conditions for all studied elements but Pb. If the contribution of TWW dominated the elements baseflow discharge to the coastal zone, rivers outweighed during floods. When discharged to the sea, most trace elements underwent partial desorption in the salinity gradient, especially at highest salinity. Laboratory desorption experiment results were consistent with field data and showed slower desorption kinetics than in baseflow conditions, suggesting that trace elements desorption rates from particles are slower than sedimentation rates. With regard to heavy particles, it results in a potential impact of the sediment on benthic organisms and a possible further desorption after sediment resuspension events. With regard to light particles, it results to a possible additional desorption during offshore transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.