Extreme climate events, floods, and drought, cause huge impact on daily lives. In order to produce society resilient to extreme events, it is necessary to assess the impact of frequent and high intensity storm events on design parameters. This article describes a methodology to develop future peak "design discharges" throughout the United States that can be used as a guidance to map future floodplains. In order to develop a lower and upper limit for anticipated peak flow discharges, two future growth scenarios -Representative Concentration Pathways (RCPs)-RCP 2.6 and 8.5 were identified as the weak and strong climate scenario respectively based on the output from the global climate models. The Generalized Least Square technique in United States Geological Survey's Weighted Multiple Regression (WREG) program was used to develop regression equations that relate peak discharges to basin and climate parameters of the contributing watershed. The design discharges reflect the most recent climate model results. Number of frost days, heavy rainfall days, high temperature days, and snow depth were found to be the common extreme climate parameters influencing the regression equations. This methodology can be extended to other flood frequency events if rainfall data is available. The future discharges can be utilized in hydraulics models to estimate floodplains that can assist in resilient infrastructure planning and outline climate change adaptation strategies.(KEY TERMS: climate variability/change; design discharges; representative concentration pathways; weighted multiple regression.)
On 26 December 2004, a devastating tsunami struck the coasts of 12 nations on the Indian Ocean. Over 300,000 people in 12 countries died in the wake of the tsunami, millions of housing units were damaged or destroyed, economies were devastated, and ecosystems were disrupted. The lessons from this catastrophe have worldwide implications, but the tragedies were local. Sri Lanka and the Aceh province of Indonesia suffered most of the casualties. The Sri Lankan experience illustrates that the recovery can be hindered by a country's social and political conditions. Challenges to recovery include the need for centralized coordination and organization, planning and development control, gathering planning data, political leadership, equitable distribution of recovery assistance, and disaster education.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.