Tailor-made synthesis and structure-property relationship of several swallow-tail N-substituted perylene bisimide (PBI) dyes are presented. PBI derivatives were synthesized by two distinct synthetic approaches, the details being evaluated herein. All the PBIs carry either alkyl swallow-tail or oligoethylenglycolether (OEG) swallow-tail moieties as N-substituents, and many of them are unsymmetrically substituted. We avoided substitution at bay positions of the perylene core to maintain the planarity and strong pi-pi interactions, which favor intermolecular order and charge carrier transport. The thermotropic behavior, which is strongly influenced by the nature of the substituents was investigated using differential scanning calorimetry (DSC), polarization optical microscopy (POM), and X-ray diffraction measurements (XRD). The introduction of OEG swallow-tail units facilitates thermotropic liquid crystalline behavior in most cases and the unsymmetrical substitution allowed the tuning of the mesophase-width. The mesophases exhibit characteristic columnar hexagonal (Col(h)) packing arising from pi-pi interactions between cofacially orientated perylene molecules. Thus, the inherent tendency of PBI molecules for crystallization could be effectively suppressed by incorporating flexible OEG swallow-tail units only at imide positions. This molecular design was crucial to obtain liquid crystallinity and intracolumnar long-range order. The substituents did not influence the electronic energy levels such as HOMO and LUMO.
While organic semiconductors used in polymer:fullerene photovoltaics are generally not intentionally doped, significant levels of unintentional doping have previously been reported in the literature. Here, we explain the differences in photocurrent collection between standard (transparent anode) and inverted (transparent cathode) low band-gap polymer:fullerene solar cells in terms of unintentional p-type doping. Using capacitance/voltage measurements, we find that the devices exhibit doping levels of order 10 16 cm 23 , resulting in space-charge regions ,100 nm thick at short circuit. As a result, low field regions form in devices thicker than 100 nm. Because more of the light is absorbed in the low field region in standard than in inverted architectures, the losses due to inefficient charge collection are greater in standard architectures. Using optical modelling, we show that the observed trends in photocurrent with device architecture and thickness can be explained if only charge carriers photogenerated in the depletion region contribute to the photocurrent.T he record power conversion efficiency (PCE) achieved by polymer:fullerene solar cells has increased considerably in the past 4 years to a record published value of 9.2% 1 for a single bulk heterojunction and efficiencies of 10.6% for tandem solar cells 2 . This is despite the fact that organic semiconductors are known to be both structurally and electronically disordered, have lower dielectric constants inhibiting separation of the photogenerated excitonic species and have charge carrier mobilities orders of magnitude lower than inorganic semiconductors.Whilst charge mobilities are low in organic semiconductors and collection losses have been shown to limit the fill factor (FF) 3-5 and short circuit current density (J SC ) 6-10 of certain devices, low mobilities do not necessarily prevent devices from performing efficiently. However the lower charge mobilities and diffusion coefficients in organic semiconductors do mean that diffusion alone is insufficient for charge carrier collection and drift must account for a large proportion of the generated photocurrent. Additionally, polymer:fullerene solar cells are not intentionally doped like their inorganic counterparts or like many small molecule solar cells 11 and therefore rely on selective contacts and the difference in work function between electrodes for efficient charge collection. However, several studies have found evidence for unintentional doping [12][13][14][15][16][17][18][19] and discussed the consequences for device behaviour 6,[20][21][22][23][24][25][26][27][28][29][30] . Whilst the origin of this doping is unclear 15 , its effects on photovoltaic performance can be substantial; however many recent analyses of device performance neglect doping 8,[31][32][33] despite the fact that the influence of doping and the electric field on charge carrier collection is well known for a long time 34 and wellstudied for instance in the field of quantum dot photovoltaics 35,36 .In this paper, we address the...
Well-soluble fullerene-grafted copolymers PPCBMs with high contents of pendant phenyl-C61-butyric acid methyl ester (PCBM) between 30 and 64 wt % are reported. Herein, the tailor-made precursor copolymers poly(4-methoxystyrene-stat-4-tert-butoxystyrene) obtained by reversible addition–fragmentation chain transfer (RAFT) polymerization are functionalized via an efficient polymer-analogous esterification. The synthesized acceptor copolymers retain the optical and electrochemical properties of the incorporated PCBM independent of their fullerene weight fraction. Their electron transport properties are studied by the space-charge limited current (SCLC) method. The maximum electron mobility μe of 1 × 10–4 cm2 V–1 s–1 is achieved for 37 wt % of incorporated PCBM. Below 50 wt % of PCBM, the acceptor polymers exhibit exceptional high charge carrier mobility compared to the corresponding blends of molecular PCBM and precursor copolymer. Detailed structural studies using AFM, TEM, and XRD are performed. We confirm amorphous morphology both in thin films and in bulk for the PPCBMs, which clearly indicates the absence of PCBM nanocrystals. Thus, an efficient charge carrier percolation is facilitated by the homogeneous distribution of PCBM in the copolymer. Additionally, the absence of nanocrystal formation was demonstrated during thermal annealing.
Three solution processable n-type semiconducting perylene bisimides (PBI) with an unsymmetrical substitution pattern are evaluated in terms of their charge transport properties, morphology, and crystal structure. The nature of the substituents is varied from hydrophobic alkyl chains to hydrophilic oligoethyleneglycol (OEG) chains to control intermolecular interactions and to tune self-assembly properties of the compounds. A correlation of structure and morphology with charge transport properties is attempted. Bulk X-ray diffraction (XRD) data are indicative for a lamello-columnar packing motif in the case of PBI 1 and PBI 3 and a columnar hexagonal packing for PBI 2. Further, OEG chains induce liquid crystalline phases while the alkyl substituted compound is crystalline. In the amorphous state after film formation all three materials have a low electron mobility in the range of 10–5 cm2 V–1 s–1. After annealing in the ordered state the mobility of the liquid crystalline compounds increases by 2 orders of magnitude up to 7 × 10–3 cm2 V–1 s–1, while the mobility of the crystalline material decreases by a factor of 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.