In the context of various approaches to super-resolution microscopy, structured illumination microscopy (SIM) offers several advantages: it needs rather low light doses (with a low risk of phototoxicity or photobleaching), is comparably fast and flexible concerning the use of microscopes, objective lenses and cameras, and has potential for 3D imaging. This paper describes an experimental setup for SIM with first diffraction orders of a spectral light modulator (SLM) creating an interference pattern in two dimensions. We kept this system rather compact with a comparably large illuminated object field, validated it with nano-beads and applied it further to living cells for imaging the cytoskeleton, mitochondria or cell nuclei with a resolution slightly above 100 nm. Its advantages, challenges and limitations—concerning cameras, acquisition time, depth of imaging, light exposure, and combining it with further super-resolving methods—are discussed.
Abstract. Two types of laser illumination in live cell microscopy with a focus on the sample or in the aperture plane of the microscope objective lens are distinguished. For the second case two examples are described, namely light scattering microscopy with angular resolution and Structured Illumination Microscopy (SIM) with two interfering laser beams. Appropriate applications include morphological studies of cells undergoing apoptosis and mitochondrial imaging with increased resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.