Reading RG6 6AJ, UKMutants of Rhizobium leguminosarum were selected that were altered in the uptake activity of the general amino acid permease (Aap). The main class of mutant maps to s u d and suct), which are part of a gene cluster mdh-sucCDAB, which codes for malate dehydrogenase (mdh), succinyl-CoA synthetase (sucCD) and components of the 2-oxoglutarate dehydrogenase complex ( s u d B ) . Mutation of either SUCC or SUCD prevents expression of 2-oxoglutarate dehydrogenase (sucAB). Conversely, mutation of sucA or sucB results in much higher levels of succinyl-CoA synthetase and malate dehydrogenase activity. These results suggest that the genes mdh-sucCDAB may constitute an operon. suc mutants, unlike the wild-type, excrete large quantities of glutamate and 2-oxoglutarate. Concomitant with mutation of s u d or suct), the intracellular concentration of glutamate but not 2-oxoglutarate was highly elevated, suggesting that 2-oxoglutarate normally feeds into the glutamate pool. Elevation of the intracellular glutamate pool appeared to be coupled to glutamate excretion as part of an overflow pathway for regulation of the TCA cycle. Amino acid uptake via the Aap of R. leguminosamm was strongly inhibited in the suc mutants, even though the transcription level of the aap operon was the same as the wild-type. This is consistent with previous observations that the Aap, which influences glutamate excretion in R. leguminosarum, has uptake inhibited when excretion occurs. Another class of mutant impaired in uptake by the Aap is mutated in polyhydroxybutyrate synthase (phaC). Mutants of succinyl-CoA synthetase (SUCD) or 2-oxoglutarate dehydrogenase (sucA) form ineffective nodules. However, mutants of aap, which are unable to grow on glutamate as a carbon source in laboratory culture, show wild-type levels of nitrogen fixation. This indicates that glutamate is not an important carbon and energy source in the bacteroid. Instead glutamate synthesis, like polyhydroxybutyrate synthesis, appears to be a sink for carbon and reductant, formed when the 2-oxoglutarate dehydrogenase complex is blocked. This is in accord with previous observations that bacteroids synthesize high concentrations of glutamate. Overall the data show that the TCA cycle in R. leguminosarum is regulated by amino acid excretion and polyhydroxybutyrate biosynthesis which act as overflow pathways for excess carbon and reductant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.