In this chapter, evolution of light beams in a cubic-quintic-septic-nonical medium is investigated. As the model equation, an extended form of the well-known nonlinear Schrödinger (NLS) equation is taken into account. By the use of a special ansatz, exact analytical solutions describing bright/dark and kink solitons are constructed. The existence of the wave solutions is discussed in a parameter regime. Moreover, the stability properties of the obtained solutions are investigated, and by employing Stuart and DiPrima’s stability analysis method, an analytical expression for the modulational stability is found.
This chapter aims to study and solve the perturbed nonlinear Schrödinger (NLS) equation with the power-law nonlinearity in a nano-optical fiber, based upon different methods such as the auxiliary equation method, the Stuart and DiPrima’s stability analysis method, and the bifurcation theory. The existence of the traveling wave solutions is discussed, and their stability properties are investigated through the modulational stability gain spectra. Moreover, the development of the chaotic motions for the systems is pointed out via the bifurcation theory. Taking into account an external periodic perturbation, we have analyzed the chaotic behavior of traveling waves through quasiperiodic route to chaos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.