The human epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. While the endosomal trafficking of many other receptor tyrosine kinases is known to regulate their oncogenic signalling, the prevailing view on HER2 is that this receptor is predominantly retained on the cell surface. Here, we find that sortilin-related receptor 1 (SORLA; SORL1 ) co-precipitates with HER2 in cancer cells and regulates HER2 subcellular distribution by promoting recycling of the endosomal receptor back to the plasma membrane. SORLA protein levels in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA triggers HER2 targeting to late endosomal/lysosomal compartments and impairs HER2-driven signalling and in vivo tumour growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.
SummaryCell-type-specific functions and identity are tightly regulated by interactions between the cell cytoskeleton and the extracellular matrix (ECM). Human pluripotent stem cells (hPSCs) have ultimate differentiation capacity and exceptionally low-strength ECM contact, yet the organization and function of adhesion sites and associated actin cytoskeleton remain poorly defined. We imaged hPSCs at the cell-ECM interface with total internal reflection fluorescence microscopy and discovered that adhesions at the colony edge were exceptionally large and connected by thick ventral stress fibers. The actin fence encircling the colony was found to exert extensive Rho-ROCK-myosin-dependent mechanical stress to enforce colony morphology, compaction, and pluripotency and to define mitotic spindle orientation. Remarkably, differentiation altered adhesion organization and signaling characterized by a switch from ventral to dorsal stress fibers, reduced mechanical stress, and increased integrin activity and cell-ECM adhesion strength. Thus, pluripotency appears to be linked to unique colony organization and adhesion structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.