Three CuZn-superoxide dismutase (SOD) functional mimics, [CuZn(dien)2(μ-Im)](ClO4)3 (1), [Cu2(dien)2(μ-Im)](ClO4)3 (2) (Im = imidazole, dien = diethylenetriamine), and [CuZn(salpn)Cl2] (3) (H2salpn = 1,3bis(salicylideneamino)propane), were successfully inserted into the nanochannels of SBA-15 type mesoporous silica with retention of the silica mesostructure. X-ray absorption spectroscopic studies indicate that the encapsulated complexes keep unchanged the first-shell environment of Cu(II) and Zn(II) ions. Magnetic measurements suggest that the nanochannels constrain the geometry of the µimidazolate-Cu(II)2 core modifying the relative orientation of the two copper coordination planes. Confinement imposed by the silica nanochannels upon encapsulation of complexes 1 and 2 leads to stable hybrid materials at physiological pH with enhanced SOD activity relative to the free complexes. Unlike the imidazolatobridged compounds, insertion of 3 in mesoporous silica leads to a less stable hybrid material exhibiting partial release into the aqueous solution and O2 •− dismutation rate slower than the free complex. The covalent binding of a mononuclear Cu(dien)Im + moiety to the mesoporous silica showed lower SOD activity than encapsulated imidazolato-bridged CuZn and Cu2 complexes. The results emphasize the positive effect of encapsulation on SOD activity of imidazolato-bridged dinuclear complexes.
Encapsulation of three superoxide dismutase (SOD) functional mimics, [CuZn(dien)2(μ-Im)(ClO4)2]ClO4 (1), [Cu2(dien)2(μ-Im)(ClO4)2]ClO4 (2) (Im = imidazolate, dien = diethylenetriamine), and [CuZn(salpn)Cl2] (3) (H2salpn = 1,3bis(salicylideneamino)propane) in mesoporous MCM-41 silica afforded three hybrid catalysts 1@MCM-41, 2@MCM-41 and 3@MCM-41. Spectroscopic and magnetic analyses of these materials confirmed the metal centers of the complexes keep the coordination sphere after insertion into the MCM-41 silica matrix. For the imidazolatebridged complexes the silica channels restraint the relative orientation of the two metal ions. While 3@MCM-41 shows SOD activity significantly lower than the host-free complex, insertion of the imidazolate-bridged CuZn or Cu2 complexes by ion exchange onto mesoporous MCM-41 silica affords durable and recoverable supported catalysts with much better SOD activity than the free complexes. For confined imidazolate-bridged complexes, 1@MCM-41 and 2@MCM-41, the small pore size of the silica matrix improves the SOD activity more than a host with larger pores. This high SOD activity is attributed to the close-fitting of the complexes into the nanochannels of MCM-41 silica that favors the Cu active site and HImZn(or Cu) group stay in close proximity during catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.