Traditional histological evaluation for grading liver disease severity is based on subjective and semi-quantitative scores. We examined the relationship between digital pathology analysis and corresponding scoring systems for the assessment of hepatic necroinflammatory activity. A prospective, multicenter study including 156 patients with chronic liver disease (74% nonalcoholic fatty liver disease-NAFLD, 26% chronic hepatitis-CH etiologies) was performed. Inflammation was graded according to the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network system and METAVIR score. Whole-slide digital image analysis based on quantitative (I-score: inflammation ratio) and morphometric (C-score: proportionate area of staining intensities clusters) measurements were independently performed. Our data show that I-scores and C-scores increase with inflammation grades (p < 0.001). High correlation was seen for CH (ρ = 0.85–0.88), but only moderate for NAFLD (ρ = 0.5–0.53). I-score (p = 0.008) and C-score (p = 0.002) were higher for CH than NAFLD. Our MATLAB algorithm performed better than QuPath software for the diagnosis of low-moderate inflammation (p < 0.05). C-score AUC for classifying NASH was 0.75 (95%CI, 0.65–0.84) and for moderate/severe CH was 0.99 (95%CI, 0.97–1.00). Digital pathology measurements increased with fibrosis stages (p < 0.001). In conclusion, quantitative and morphometric metrics of inflammatory burden obtained by digital pathology correlate well with pathologists’ scores, showing a higher accuracy for the evaluation of CH than NAFLD.
Magnetic resonance (MR) imaging is the most sensitive clinical tool in the diagnosis and monitoring of multiple sclerosis (MS) alterations. Spinal cord evaluation has gained interest in this clinical scenario in recent years but, unlike the brain, there is a more limited choice of algorithms to assist spinal cord segmentation. Our goal was to investigate and develop an automatic MR cervical cord segmentation method, enabling automated and seamless spinal cord atrophy assessment and setting the stage for the development of an aggregated algorithm for the extraction of lesion-related imaging biomarkers. The algorithm was developed using a real-world MR imaging dataset of 121 MS patients (96 cases used as a training dataset and 25 cases as a validation dataset). Transversal, 3D-T1 weighted gradient echo MR images (TE/TR/FA=1.7-2.7ms/5.6-8.2ms/12°) were acquired in a 3T system (SignaHD, GEHC) as standard of care in our clinical practice. Experienced radiologists supervised the manual labelling, which was considered the ground-truth. The 2D convolutional neural network consisted of a hybrid residual attentionaware segmentation method trained to delineate the cervical spinal cord. The training was conducted using a focal loss function, based on the Tversky index to address label imbalance, and an automatic optimal learning rate finder. Our automated model provided an accurate segmentation, achieving a validation DICE coefficient of 0.904±0.101 compared with the manual delineation. An automatic method for cervical spinal cord segmentation on T1-weighted MR images was successfully implemented. It will have direct implications serving as the first step for accelerating the process for MS staging and follow-up through imaging biomarkers.
Objectives. To externally validate and assess the accuracy of a previously trained fully automatic nnU-Net CNN algorithm to identify and segment primary neuroblastoma tumors in MR images in a large children cohort. Methods. An international multicenter, multivendor imaging repository of patients with neuroblastic tumors was used to validate the performance of a trained Machine Learning (ML) tool to identify and delineate primary neuroblastoma tumors. The dataset was heterogeneous and completely independent from the one used to train and tune the model, consisting of 300 children with neuroblastic tumors having 535 MR T2-weighted sequences (486 sequences at diagnosis and 49 after finalization of the first phase of chemotherapy). The automatic segmentation algorithm was based on a nnU-Net architecture developed within the PRIMAGE project. For comparison, the segmentation masks were manually edited by an expert radiologist, and the time for the manual editing was recorded. Different overlaps and spatial metrics were calculated to compare both masks. Results. The median Dice Similarity Coefficient (DSC) was high 0.997; 0.944–1.000 (median; Q1–Q3). In 18 MR sequences (6%), the net was not able neither to identify nor segment the tumor. No differences were found regarding the MR magnetic field, type of T2 sequence, or tumor location. No significant differences in the performance of the net were found in patients with an MR performed after chemotherapy. The time for visual inspection of the generated masks was 7.9 ± 7.5 (mean ± Standard Deviation (SD)) seconds. Those cases where manual editing was needed (136 masks) required 124 ± 120 s. Conclusions. The automatic CNN was able to locate and segment the primary tumor on the T2-weighted images in 94% of cases. There was an extremely high agreement between the automatic tool and the manually edited masks. This is the first study to validate an automatic segmentation model for neuroblastic tumor identification and segmentation with body MR images. The semi-automatic approach with minor manual editing of the deep learning segmentation increases the radiologist’s confidence in the solution with a minor workload for the radiologist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.