The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.
The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a singlebounce silicon (111) monochromator and two mirrors in Kirkpatrick-Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.
The demand for access to macromolecular crystallography synchrotron beam time continues to increase. To meet this demand the ESRF has constructed a dual station beamline using a canted undulator system as the X-ray source. The first phase of the beamline to be constructed is ID23-1, a tunable MAD-capable station with a mini-focus X-ray beam. The beamline makes use of well characterized optical elements: a channel-cut monochromator with a high-precision toroidal mirror to focus the X-ray beam. The beamline has been conceived with the aim of providing high levels of automation to create an industrial-like environment for protein crystallography. A new software suite has been developed to permit reliable easy operation for the beamline users and beamline staff. High levels of diagnostics are built in to allow rapid trouble-shooting. These developments are now being exported to the ESRF macromolecular crystallography beamline complex and have been made in a modular fashion to facilitate transportability to other synchrotrons.
ID29 is an ESRF undulator beamline with a routinely accessible energy range of between 20.0 keV and 6.0 keV (= 0.62 Å to 2.07 Å) dedicated to the use of anomalous dispersion techniques in macromolecular crystallography. Since the beamline was first commissioned in 2001, ID29 has, in order to provide an improved service to both its academic and proprietary users, been the subject of almost continuous upgrade and refurbishment. It is now also the home to the ESRF Cryobench facility, ID29S. Here, the current status of the beamline is described and plans for its future are briefly outlined.
A standard sample holder and vial for cryocooled macromolecular crystals has been defined for use with robotic sample changers. This SPINE standard sample holder is a modified version, with added features and specifications, of sample holders in common use. In particular, the SPINE standard meets the precision required for automatic sample exchange and includes a cap that is identified by a two-dimensional datamatrix code as well as an optional vial. At the ESRF, the sample holder standard is in use with the EMBL/ESRF/BM14 robotic sample changer (SC3) which is installed on eight beamlines. The SC3 can hold up to 50 crystals stored in five baskets. A datamatrix reader in the SC3 ensures safe management of the sample flow and facilitates fully automatic screening and characterization of samples. Tools for handling and transporting 50 samples in a dry shipping dewar have been developed. In addition to the SC3, the SPINE sample holder is currently compatible with a number of other robotic sample changers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.