Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non-neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimer's and Parkinson's diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.
Amyloid β peptide (Aβ) is a key player in the development of Alzheimer’s disease (AD). It is the primary component of senile plaques in AD patients and is also found in soluble forms. Cholinergic activity mediated by α7 nicotinic receptors has been shown to be affected by Aβ soluble forms. To shed light into the molecular mechanism of this effect, we explored the direct actions of oligomeric Aβ1–40 and Aβ1–42 on human α7 by fluorescence spectroscopy and single-channel recordings. Fluorescence measurements using the conformational sensitive probe crystal violet (CrV) revealed that in the presence of Aβ α7 undergoes concentration-dependent conformational changes. Exposure of α7 to 100 pM Aβ changes CrV KD towards that of the desensitized state. However, α7 is still reactive to high carbamylcholine (Carb) concentrations. These observations are compatible with the induction of active/desensitized states as well as of a novel conformational state in the presence of both Aβ and Carb. At 100 nM Aβ, α7 adopts a resting-state-like structure which does not respond to Carb, suggesting stabilization of α7 in a blocked state. In real time, we found that Aβ is capable of eliciting α7 channel activity either in the absence or presence of the positive allosteric modulator (PAM) PNU-120596. Activation by Aβ is favored at picomolar or low nanomolar concentrations and is not detected at micromolar concentrations. At high Aβ concentrations, the mean duration of activation episodes elicited by ACh in the presence of PNU-120596 is significantly reduced, an effect compatible with slow open-channel block. We conclude that Aβ directly affects α7 function by acting as an agonist and a negative modulator. Whereas the capability of low concentrations of Aβ to activate α7 could be beneficial, the reduced α7 activity in the presence of higher Aβ concentrations or its long exposure may contribute to the cholinergic signaling deficit and may be involved in the initiation and development of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.