Twenty eight species of Ixodidae have been found on man in South America (21 Amblyomma, 1 Boophilus, 2 Dermacentor, 2 Haemaphysalis, 1 Ixodes and 1 Rhipicephalus species). Most of them are rarely found on man. However, three species frequently parasitize humans in restricted areas of Argentina (A. neumanni reported from 46 localities), Uruguay (A. triste from 21 sites) and Argentina-Brazil (A. parvum from 27 localities). The most widespread ticks are A. cajennense (134 localities in Argentina, Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Suriname and Venezuela), A. ovale (37 localities in Argentina, Brazil, Ecuador, French Guiana, Guyana, Paraguay, Suriname and Venezuela) and A. oblongoguttatum (28 sites in Brazil, Colombia, French Guiana, Guyana, Suriname and Venezuela). Amblyomma aureolatum (18 localities in Argentina, Brazil, French Guiana and Paraguay), A. cajennense, and A. triste are vectors of rickettsioses to man in South America. A better understanding of the respective roles of these and other tick species in transmitting pathogens to humans will require further local investigations. Amblyomma ticks should be the main subjects of these studies followed by species of Boophilus, Dermacentor, Haemaphysalis and Rhipicephalus species. In contrast with North America, Europe and Asia, ticks of the genus Ixodes do not appear to be major players in transmitting diseases to human. Indeed, there is only one record of an Ixodes collected while feeding on man for all South America.
Spotted-fever-caused Rickettsia rickettsii infection is in Brazil the major tick-borne zoonotic disease. Recently, a second and milder human rickettsiosis caused by an agent genetically related to R. parkeri was discovered in the country (Atlantic rainforest strain). Both diseases clearly have an ecological background linked to a few tick species and their environment. Capybaras (Hydrochoerus hydrochaeris) and Amblyomma cajennense ticks in urban and rural areas close to water sources are the main and long-known epidemiological feature behind R. rickettsii-caused spotted-fever. Unfortunately, this ecological background seems to be increasing in the country and disease spreading may be foreseen. Metropolitan area of São Paulo, the most populous of the country, is embedded in Atlantic rainforest that harbors another important R. rickettsii vector, the tick Amblyomma aureolatum. Thus, at the city–forest interface, dogs carry infected ticks to human dwellings and human infection occurs. A role for R. rickettsii vectoring to humans of a third tick species, Rhipicephalus sanguineus in Brazil, has not been proven; however, there is circumstantial evidence for that. A R. parkeri-like strain was found in A. ovale ticks from Atlantic rainforest and was shown to be responsible for a milder febrile human disease. Rickettsia-infected A. ovale ticks are known to be spread over large areas along the Atlantic coast of the country, and diagnosis of human infection is increasing with awareness and proper diagnostic tools. In this review, ecological features of the tick species mentioned, and that are important for Rickettsia transmission to humans, are updated and discussed. Specific knowledge gaps in the epidemiology of such diseases are highlighted to guide forthcoming research.
Recently, a novel human rickettsiosis, namely Atlantic rainforest spotted fever, was described in Brazil. We herein report results of a survey led around the index case in an Atlantic rainforest reserve in Peruibe municipality, southeastern Brazil. A Rickettsia parkeri-like agent (Rickettsia sp. Atlantic rainforest genotype) and Ricketsia bellii were isolated from adult Amblyomma ovale ticks collected from dogs. Molecular evidence of infection with strain Atlantic rainforest was obtained for 30 (12.9%) of 232 A. ovale adult ticks collected from dogs. As many as 88.6% of the 35 examined dogs had anti-Rickettsia antibodies, with endpoint titres at their highest to R. parkeri. High correlation among antibody titres in dogs, A. ovale infestations, and access to rainforest was observed. Amblyomma ovale subadults were found predominantly on a rodent species (Euryoryzomys russatus). From 17 E. russatus tested, 6 (35.3%) displayed anti-Rickettsia antibodies, with endpoint titres highest to R. parkeri. It is concluded that Atlantic rainforest genotype circulates in this Atlantic rainforest area at relatively high levels. Dogs get infected when bitten by A. ovale ticks in the forest, and carry infected ticks to households. The role of E. russatus as an amplifier host of Rickettsia to A. ovale ticks deserves investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.