In this work we develop a formalism for describing localised quanta for a real-valued Klein-Gordon field in a one-dimensional box [0, R]. We quantise the field using non-stationary local modes which, at some arbitrarily chosen initial time, are completely localised within the left or the right side of the box. In this concrete set-up we directly face the problems inherent to a notion of local field excitations, usually thought of as elementary particles. Specifically, by computing the Bogoliubov coefficients relating local and standard (global) quantizations, we show that the local quantisation yields a Fock space F L which is unitarily inequivalent to the standard one F G . In spite of this, we find that the local creators and annihilators remain well defined in the global Fock space F G , and so do the local number operators associated to the left and right partitions of the box. We end up with a useful mathematical toolbox to analyse and characterise local features of quantum states in F G . Specifically, an analysis of the global vacuum state |0 G ∈ F G in terms of local number operators shows, as expected, the existence of entanglement between the left and right regions of the box. The local vacuum |0 L ∈ F L , on the contrary, has a very different character. It is neither cyclic nor separating and displays no entanglement. Further analysis shows that the global vacuum also exhibits a distribution of local excitations reminiscent, in some respects, of a thermal bath. We discuss how the mathematical tools developed herein may open new ways for the analysis of fundamental problems in local quantum field theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.