In this proof-of-concept study we combine two optical techniques to enable assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in mid-infrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. The analysis involves simultaneous fitting of measured PPTR signals and DRS with corresponding predictions of a Monte Carlo model of light-tissue interaction. By using a four-layer optical model of skin we obtain a good match between the experimental and model data when scattering properties of the epidermis and dermis are also optimized on an individual basis. The assessed parameter values correlate well with literature data and demonstrate the expected trends in controlled tests involving temporary obstruction of peripheral blood circulation using a pressure cuff, and acute as well as seasonal sun tanning.
We report on the first experimental evaluation of pulsed photothermal radiometry (PPTR) using a spectrally composite kernel matrix in signal analysis. Numerical studies have indicated that this approach could enable PPTR temperature profiling in watery tissues with better accuracy and stability as compared to the customary monochromatic approximation. By using an optimized experimental set-up and image reconstruction code (involving a projected nu-method and adaptive regularization), we demonstrate accurate localization of thin absorbing layers in agar tissue phantoms with pronounced spectral variation of a mid-infrared absorption coefficient. Moreover, the widths of reconstructed temperature peaks reach 14-17% of their depth, significantly less than in earlier reports on PPTR depth profiling in watery tissues. Experimental results are replicated by a detailed numerical simulation, which enables analysis of the broadening effect as a function of temperature profile amplitude and depth.
Abstract. Hyperspectral imaging combines high spectral and spatial resolution in one modality. This imaging technique is a promising tool for objective medical diagnostics. However, to be attractive in a clinical setting, the technique needs to be fast and accurate. Hyperspectral imaging can be used to analyze tissue properties using spectroscopic methods, and is thus useful as a general purpose diagnostic tool. We combine an analytic diffusion model for photon transport with real-time analysis of the hyperspectral images. This is achieved by parallelizing the inverse photon transport model on a graphics processing unit to yield optical parameters from diffuse reflectance spectra. The validity of this approach was verified by Monte Carlo simulations. Hyperspectral images of human skin in the wavelength range 400-1000 nm, with a spectral resolution of 3.6 nm and 1600 pixels across the field of view (Hyspex VNIR-1600), were used to develop the presented approach. The implemented algorithm was found to output optical properties at a speed of 3.5 ms per line of image data. The presented method is thus capable of meeting the defined real-time requirement, which was 30 ms per line of data.The algorithm is a proof of principle, which will be further developed.
A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.
Background and Objective Despite application of cryogen spray (CS) precooling, customary treatment of port wine stain (PWS) birthmarks with a single laser pulse does not result in complete lesion blanching for a majority of patients. One obvious reason is nonselective absorption by epidermal melanin, which limits the maximal safe radiant exposure. Another possible reason for treatment failure is screening of laser light within large PWS vessels, which prevents uniform heating of the entire vessel lumen. Our aim is to identify the parameters of sequential CS cooling and laser irradiation that will allow optimal photocoagulation of various PWS blood vessels with minimal risk of epidermal thermal damage. Study Design and Methods Light and heat transport in laser treatment of PWS are simulated using a custom 3D Monte Carlo model and 2D finite element method, respectively. Protein denaturation in blood and skin are calculated using the Arrhenius kinetic model with tissue-specific coefficients. Simulated PWS vessels with diameters of 30–150 μm are located at depths of 200–600 μm, and shading by nearby vessels is accounted for according to PWS histology data from the literature. For moderately pigmented and dark skin phototypes, PWS blood vessel coagulation and epidermal thermal damage are assessed for various parameters of sequential CS cooling and 532-nm laser irradiation, i.e. the number of pulses in a sequence (1–5), repetition rate (7–30 Hz), and radiant exposure. Results Simulations of PWS treatment in darker skin phototypes indicate specific cooling/irradiation sequences that provide significantly higher efficacy and safety as compared to the customary single-pulse approach across a wide range of PWS blood vessel diameters and depths. The optimal sequences involve three to five laser pulses at repetition rates of 10–15 Hz. Conclusions Application of the identified cooling/irradiation sequences may offer improved therapeutic outcome for patients with resistant PWS, especially in darker skin phototypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.