Irregular precipitations are likely to affect maize production in the future. Arbuscular mycorrhizal fungi (AMF) have been reported to increase maize resistance to drought, but their role on the short-term inorganic phosphorus (Pi) uptake, leaf gas exchange parameters and water content during recovery after drought remains poorly understood. Here, we investigated these parameters in maize plants colonized or not by Rhizophagus irregularis MUCL 41833. The mycorrhizal (M) and non-mycorrhizal (NM) plants were grown for a 3-week period in a circulatory semi-hydroponic cultivation system and were submitted to well-, moderately-, or poorly-watered conditions (WW, MW, and PW, respectively), the two latter conditions corresponding to moderate and severe droughts. The plants were then watered at field capacity for 42 h with a Pi impoverished Hoagland nutrient solution and the dynamic of Pi depletion in the nutrient solution, corresponding to Pi uptake/immobilization by the maize-AMF associates, was evaluated at 0, 9, 21, and 42 h. The CO 2 assimilation rate (A), stomatal conductance (g s ), transpiration (E), and instantaneous water use efficiency (WUE i ) were also assessed at 0 and 42 h of circulation. Plant biomass, plant water content, phosphorus concentration and content, and leaf relative water content were evaluated at harvest. During recovery, Pi uptake was significantly higher in M versus NM plants whatever the water regime (WR) applied before recovery. AMF did not affect leaf gas exchange parameters before recovery but modulated g s and E, and improved WUE i after 42 h of recovery. At harvest, no significant difference in dry biomass was found between M and NM plants but shoot fresh weight was significantly higher in M plants. This resulted in an increased shoot water content in M plants grown in the MW and PW treatments. Surprisingly, leaf relative water content was significantly lower in M plants when compared with NM plants. Finally, P content and concentration were significantly higher in roots but not in shoots of M plants. Our results suggested that AMF can play a role in drought resistance of maize plants by increasing the Pi uptake and WUE i during recovery after drought stress.
Climate change, drought, erosion, water contamination resources, desertification, and loss of soil quality represent major environmental risks worldwide. Facing these risks is the most important issue for sustainable development. Conventional tillage (CT) practices seem to expose the soils of semi-arid regions, which are initially fragile, to degradation that is accentuated by the overuse of the environment. The benefits of conservation agriculture (CA) could mitigate the degradation of natural resources, particularly soils. The adaptation and transfer of the no-till (NT) system with mulch open new perspectives for the development of agriculture in semi-arid regions. The main objective of this study is to assess the impact of conservation agriculture, especially no-till (NT) system, on the physical properties of soil (structural stability (SS), bulk density (BD), gravimetric water content (θg), and soil organic matter (SOM)) compared to conventional tillage (CT). The main changes associated with the transition from a CT system to an NT system were evaluated at the experimental site, Merchouch (M13), which is typified by vertisol soil, and at the Ain Sbit (AS7) site, which is characterized by isohumic soil. Under a no-till system, most of the physical properties of the soil were improved in both sites, with a clear difference in the M13 site. Structural stability under NT showed a significant increase in both sites (fast wetting (FW), slow wetting (SW), and wet stirring (WS) improved by 88, 43, and 83% at the M13 site, respectively, against, 16, 23, and 7%, respectively, at the AS7 site). On the other hand, the SOM increased from 2.0 to 2.6% (an improvement of 28%) at AS7 and from 1.2% to 1.9% (an improvement of 52%) at M13. This research demonstrated that conservation agriculture, especially NT, improves the soil physical quality in both medium and long terms, confirming its suitability for the climatic and edaphic constraints of semi-arid areas in Morocco as well as in other parts of the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.