Rewilding is an ecological restoration concept that promotes the natural recovery of ecosystems, through (initial) active or passive removal of human influence. To support the application of rewilding approaches in rivers and their watersheds, we propose a framework to assess 'rewilding potential' based on measurement of basic river ecosystem functions (e.g. restoring flood and nutrient pulses), including examples of specific indicators for these processes. This includes a discussion of the challenges in implementing rewilding projects, such as lack of spatio-temporal data coverage for certain ecosystem functions or tackling ongoing problems once active management is removed. We aim to stimulate new thinking on the restoration of wild rivers, and also provide an annotated bibliography of rewilding studies to support this.
The delivery of consistent and accurate fine‐resolution data on biodiversity using metabarcoding promises to improve environmental assessment and research. Whilst this approach is a substantial improvement upon traditional techniques, critics note that metabarcoding data are suitable for establishing taxon occurrence, but not abundance. We propose a novel hierarchical approach to recovering abundance information from metabarcoding, and demonstrate this technique using benthic macroinvertebrates. To sample a range of abundance structures without introducing additional changes in composition, we combined seasonal surveys with fish‐exclusion experiments at Catamaran Brook in northern New Brunswick, Canada. Five monthly surveys collected 31 benthic samples for DNA metabarcoding divided between caged and control treatments. A further six samples per survey were processed using traditional morphological identification for comparison. By estimating the probability of detecting a single individual, multispecies abundance models infer changes in abundance based on changes in detection frequency. Using replicate detections of 184 genera (and 318 species) from metabarcoding samples, our analysis identified changes in abundance arising from both seasonal dynamics and the exclusion of fish predators. Counts obtained from morphological samples were highly variable, a feature that limited the opportunity for more robust comparison, and emphasizing the difficulty standard methods also face to detect changes in abundance. Our approach is the first to demonstrate how quantitative estimates of abundance can be made using metabarcoding, both among species within sites as well as within species among sites. Many samples are required to capture true abundance patterns, particularly in streams where counts are highly variable, but few studies can afford to process entire samples. Our approach allows study of responses across whole communities, and at fine taxonomic resolution. We discuss how ecological studies can use additional sampling to capture changes in abundance at fine resolution, and how this can complement broad‐scale biomonitoring using DNA metabarcoding.
Metabarcoding is capable of delivering consistent and accurate fine-resolution biodiversity data, and offers great promise for improving aspects of environmental assessment and research. Even so, many ecologists are keen to make further inferences about species’ abundances and the number of sequence reads has proven to be a poor proxy for abundance. The conservative interpretation has been to treat metabarcoding data as presence/absence, and although such data are less rich, occurrence and abundance are only different expressions of the same phenomenon. Interestingly if we assume the probability of detecting individuals is constant, it should be possible to use changes in the frequency of detection to infer changes in the underlying abundance. We tested the possibility that changes in the abundance structure of benthic macroinvertebrate communities could be recovered using replicated metabarcoding. We conducted 5 monthly surveys from Jun-Nov 2019 at the Catamaran Brook, a small tributary of the Little Southwest Miramichi River in New Brunswick, Canada. Each survey collected 30 benthic samples divided between control and treatment cages that excluded predatory fish. A further 6 samples were taken for traditional microscopic identification and counting. Analysis of the metabarcoding data demonstrated that we could recover plausible changes in abundance from occurrence data, including significant responses to both seasonal dynamics and the experimental exclusion of predators. The microscopy samples merely confirmed that count data are highly stochastic, and therefore while specific estimates of expected abundance from our model are highly uncertain, they capture those differences we could validate. In summary, while we confirmed that occurrence data are more robust for routine bioassessment, it is possible to recover fine-resolution changes in abundance that can inform ecological studies using metabarcoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.