In the last two decades, accumulating evidence pointed to the importance of autophagy in various human diseases. As an essential evolutionary catabolic process of cytoplasmatic component digestion, it is generally believed that modulating autophagic activity, through targeting specific regulatory actors in the core autophagy machinery, may impact disease processes. Both autophagy upregulation and downregulation have been found in cancers, suggesting its dual oncogenic and tumor suppressor properties during malignant transformation. Identification of the key autophagy targets is essential for the development of new therapeutic agents. Despite this great potential, no therapies are currently available that specifically focus on autophagy modulation. Although drugs like rapamycin, chloroquine, hydroxychloroquine, and others act as autophagy modulators, they were not originally developed for this purpose. Thus, autophagy may represent a new and promising pharmacologic target for future drug development and therapeutic applications in human diseases. Here, we summarize our current knowledge in regard to the interplay between autophagy and malignancy in the most significant tumor types: pancreatic, breast, hepatocellular, colorectal, and lung cancer, which have been studied in respect to autophagy manipulation as a promising therapeutic strategy. Finally, we present an overview of the most recent advances in therapeutic strategies involving autophagy modulators in cancer.
The mitophagy receptor Nix interacts with LC3/GABARAP proteins, targeting mitochondria into autophagosomes for degradation. Here we present evidence for phosphorylation-driven regulation of the Nix:LC3B interaction. Isothermal titration calorimetry and NMR indicate a ~100 fold enhanced affinity of the serine 34/35-phosphorylated Nix LC3-interacting region (LIR) to LC3B and formation of a very rigid complex compared to the non-phosphorylated sequence. Moreover, the crystal structure of LC3B in complex with the Nix LIR peptide containing glutamic acids as phosphomimetic residues and NMR experiments revealed that LIR phosphorylation stabilizes the Nix:LC3B complex via formation of two additional hydrogen bonds between phosphorylated serines of Nix LIR and Arg11, Lys49 and Lys51 in LC3B. Substitution of Lys51 to Ala in LC3B abrogates binding of a phosphomimetic Nix mutant. Functionally, serine 34/35 phosphorylation enhances autophagosome recruitment to mitochondria in HeLa cells. Together, this study provides cellular, biochemical and biophysical evidence that phosphorylation of the LIR domain of Nix enhances mitophagy receptor engagement.
Here, we report a comparative study of the phytochemical profile and the biological activity of two onion extracts, namely Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842), members of the family Amaryllidaceae. The identification of flavonoids and anthocyanins, and their individual quantities, was determined by high-performance liquid chromatography (HPLC). The potency of both extracts to scavenge free radicals was determined by the DPPH (2,2′-diphenyl-1-picrylhydrazyl) radical-scavenging activity and oxygen radical absorbance capacity (ORAC) methods. The DNA protective role was further tested by the single-cell gel electrophoresis (COMET) assay and by Fenton’s reagent causing double-strand breaks on the closed circular high copy pUC19 plasmid isolated from Escherichia coli. In the presence of both extracts, a significant decrease in DNA damage was observed, which indicates a protective role of Allium cepa and Allium × cornutum on DNA strand breaks. Additionally, cytotoxicity was tested on glioblastoma and breast cancer cell lines. The results showed that both extracts had antiproliferative effects, but the most prominent decrease in cellular growth was observed in glioblastoma cells.
n‐Amyltriethoxysilane and phenyltriethoxysilane were hydrolyzed in organic solvents in the presence of acidic or basic catalysts. The bulky substituents allow relatively large amounts of low‐molecular‐weight partial hydrolysis products to be isolated and stabilize the silanol functions present against further condensation. Cyclic ethoxypolysiloxanols in the molecular weight range 500–1000 are principal products of acid catalyzed hydrolysis. More extensive condensation occurs under alkaline conditions. Relatively high yields of low‐polymeric silsesquioxanes (octamers and possibly hexamers) are then obtained. The major product obtained from phenyltriethoxysilane, when hydrolyzed in a ketone solvent with a quaternary base as catalyst, is an amorphous high polymer virtually free of functional groups. In inert solvents in the presence of traces of catalyst a very facile rearrangement occurs, giving the octamer (and possibly the hexamer) in very high yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.