Supernova explosions are one of the most energetic-and potentially lethal-phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼ 130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼ 2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.
The early activation marker, CD69, is transiently expressed on activated mature T cells and on thymocytes that are undergoing positive or negative selection in the thymus. CD69 is a member of the NK gene complex family of C-type lectin-like signaling receptors; however, its function is unknown. In this report, we describe the characterization of mice that constitutively express high levels of surface CD69 on immature and mature T cells throughout development. Constitutive surface expression of CD69 did not affect T cell maturation, signaling through the TCR or thymocyte selection. However, phenotypically and functionally mature thymocytes accumulated in the medulla of CD69 transgenic mice and failed to be exported from the thymus. The retention of mature thymocytes correlated with transgene dose and CD69 surface levels. These results identify a potential role for CD69 in controlling thymocyte export, and suggest that the transient expression of CD69 on thymocytes and T cells may function to regulate thymocyte and T cell trafficking.
We have used the human leukemia cell line K562 as a model to study the role of c-myc in di erentiation and apoptosis. We have generated stable transfectants of K562 constitutively expressing two c-Myc inhibitory mutants: D106-143, that carries a deletion in the transactivation domain of the protein, and In373, that carries an insertion in the DNA-interacting region. We show here that In373 is able to compete with c-Myc for Max binding and to inhibit the transformation activity of c-Myc. K562 cells can di erentiate towards erythroid or myelomonocytic lineages. K562 transfected with c-myc mutants showed a higher expression of erythroid di erentiation markers, without any detectable e ects in the myelomonocytic di erentiation. We also transfected K562 cells with a zinc-inducible max gene. Ectopic Max overexpression resulted in an increased erythroid di erentiation, thus reproducing the e ects of c-myc inhibitory mutants. We also studied the role of c-myc mutants and max in apoptosis of K562 induced by okadaic acid, a protein phosphatases inhibitor. The expression of D106-143 and In373 c-myc mutants and the overexpression of max reduced the apoptosis mediated by okadaic acid. The common biochemical activity of D106-143 and In373 is to bind Max and hence to titrate out c-Myc to form non-functional Myc/ Max dimers. Similarly, Max overexpression would decrease the relative levels of c-Myc/Max with respect to Max/Max. The results support a model where a threshold of functional c-Myc/Max is required to maintain K562 cells in an undi erentiated state and to undergo drug-mediated apoptosis.
The familial Alzheimer's disease gene products, presenilin-1 and presenilin-2 (PS1 and PS2), are involved in amyloid β-protein precursor processing (AβPP), Notch receptor signaling, and programmed cell death. However, the molecular mechanisms by which presenilins regulate these processes remain unknown. Clues about the function of a protein can be obtained by seeing whether it interacts with another protein of known function. Using the yeast two-hybrid system, we identified two proteins that interact and colocalize with the presenilins. One of these newly detected presenilin-interacting proteins belongs to the FtsH family of ATP-dependent proteases, and the other one belongs to Rhomboid superfamily of membrane proteins that are highly conserved in eukaryotes, archaea and bacteria. Based on the pattern of amino acid residues conservation in the Rhomboid superfamily, we hypothesize that these proteins possess a metal-dependent enzymatic, possibly protease activity. The two putative proteases interacting with presenilins could mediate specific proteolysis of membrane proteins and contribute to the network of interactions in which presenilins are involved.
During thymocyte development, CCR9 is expressed on late CD4−CD8− (double-negative (DN)) and CD4+CD8+ (double-positive) cells, but is subsequently down-regulated as cells transition to the mature CD4+ or CD8+ (single-positive (SP)) stage. This pattern of expression has led to speculation that CCR9 may regulate thymocyte trafficking and/or export. In this study, we generated transgenic mice in which CCR9 surface expression was maintained throughout T cell development. Significantly, forced expression of CCR9 on mature SP thymocytes did not inhibit their export from the thymus, indicating that CCR9 down-regulation is not essential for thymocyte emigration. CCR9 was also expressed prematurely on immature DN thymocytes in CCR9 transgenic mice. Early expression of CCR9 resulted in a partial block of development at the DN stage and a marked reduction in the numbers of double-positive and SP thymocytes. Moreover, in CCR9-transgenic mice, CD25high DN cells were scattered throughout the cortex rather than confined to the subcapsular region of the thymus. Together, these results suggest that regulated expression of CCR9 is critical for normal development of immature thymocytes, but that down-regulation of CCR9 is not a prerequisite for thymocyte emigration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.