Autophagy is crucial in the turnover of cell components, and clearance of damaged organelles by the autophagic-lysosomal pathway is essential for tissue homeostasis. Defects of this degradative system have a role in various diseases, but little is known about autophagy in muscular dystrophies. We have previously found that muscular dystrophies linked to collagen VI deficiency show dysfunctional mitochondria and spontaneous apoptosis, leading to myofiber degeneration. Here we demonstrate that this persistence of abnormal organelles and apoptosis are caused by defective autophagy. Skeletal muscles of collagen VI-knockout (Col6a1(-/-)) mice had impaired autophagic flux, which matched the lower induction of beclin-1 and BCL-2/adenovirus E1B-interacting protein-3 (Bnip3) and the lack of autophagosomes after starvation. Forced activation of autophagy by genetic, dietary and pharmacological approaches restored myofiber survival and ameliorated the dystrophic phenotype of Col6a1(-/-) mice. Furthermore, muscle biopsies from subjects with Bethlem myopathy or Ullrich congenital muscular dystrophy had reduced protein amounts of beclin-1 and Bnip3. These findings indicate that defective activation of the autophagic machinery is pathogenic in some congenital muscular dystrophies.
Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.
Macrophages contribute to peripheral nerve regeneration and produce collagen VI, an extracellular matrix protein involved in nerve function. Here, we show that collagen VI is critical for macrophage migration and polarization during peripheral nerve regeneration. Nerve injury induces a robust upregulation of collagen VI, whereas lack of collagen VI in Col6a1(-/-) mice delays peripheral nerve regeneration. In vitro studies demonstrated that collagen VI promotes macrophage migration and polarization via AKT and PKA pathways. Col6a1(-/-) macrophages exhibit impaired migration abilities and reduced antiinflammatory (M2) phenotype polarization, but are prone to skewing toward the proinflammatory (M1) phenotype. In vivo, macrophage recruitment and M2 polarization are impaired in Col6a1(-/-) mice after nerve injury. The delayed nerve regeneration of Col6a1(-/-) mice is induced by macrophage deficits and rejuvenated by transplantation of wild-type bone marrow cells. These results identify collagen VI as a novel regulator for peripheral nerve regeneration by modulating macrophage function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.