We investigated the interstellar medium (ISM) properties of the disc and outflowing gas in the central regions of nine nearby Seyfert galaxies, all characterised by prominent conical or biconical outflows. These objects are part of the Measuring Active Galactic Nuclei Under MUSE Microscope (MAGNUM) survey, which aims to probe their physical conditions and ionisation mechanism by exploiting the unprecedented sensitivity of the Multi Unit Spectroscopic Explorer (MUSE), combined with its spatial and spectral coverage. Specifically, we studied the different properties of the gas in the disc and in the outflow with spatially and kinematically resolved maps by dividing the strongest emission lines in velocity bins. We associated the core of the lines with the disc, consistent with the stellar velocity, and the redshifted and the blueshifted wings with the outflow. We measured the reddening, density, ionisation parameter, and dominant ionisation source of the emitting gas for both components in each galaxy. We find that the outflowing gas is characterised by higher values of density and ionisation parameter than the disc, which presents a higher dust extinction. Moreover, we distinguish high-and low-ionisation regions across the portion of spatially resolved narrow-line region (NLR) traced by the outflowing gas. The high-ionisation regions characterised by the lowest [N ii]/Hα and [S ii]/Hα line ratios generally trace the innermost parts along the axis of the emitting cones where the [S iii]/[S ii] line ratio is enhanced, while the low-ionisation regions follow the cone edges and/or the regions perpendicular to the axis of the outflows, also characterised by a higher [O iii] velocity dispersion. A possible scenario to explain these features relies on the presence of two distinct populations of line emitting clouds: one is optically thin to the radiation and is characterised by the highest excitation, while the other is optically thick and is impinged by a filtered, and thus harder, radiation field which generates strong low-excitation lines. The highest values of [N ii]/Hα and [S ii]/Hα line ratios may be due to shocks and/or a hard filtered radiation field from the active galactic nucleus.
Context. Ionized outflows, revealed by broad asymmetric wings of the [O iii] λ5007 line, are commonly observed in active galactic nuclei (AGN) but the low intrinsic spatial resolution of the observations has generally prevented a detailed characterization of their properties. The MAGNUM survey aims at overcoming these limitations by focusing on the nearest AGN, including NGC 1365, a nearby Seyfert galaxy (D ∼ 17 Mpc), hosting a low-luminosity active nucleus (L bol ∼ 2 × 10 43 erg s −1 ). Aims. We want to obtain a detailed picture of the ionized gas in the central ∼5 kpc of NGC 1365 in terms of physical properties, kinematics, and ionization mechanisms. We also aim to characterize the warm ionized outflow as a function of distance from the nucleus and its relation with the nuclear X-ray wind. Methods. We employed optical integral-field spectroscopic observations from VLT/MUSE to investigate the warm ionized gas and Chandra ACIS-S X-ray data for the hot highly-ionized phase. We obtained flux, kinematic, and diagnostic maps of the optical emission lines, which we used to disentangle outflows from gravitational motions in the disk and measure the gas properties down to a spatial resolution of ∼70 pc. We then performed imaging spectroscopy on Chandra ACIS-S data guided by the matching with MUSE maps. Results. The [O iii] emission mostly traces a kpc-scale biconical outflow ionized by the AGN having velocities up to ∼200 km s −1 . Hα emission traces instead star formation in a circumnuclear ring and along the bar, where we detect non-circular streaming gas motions. Soft X-rays are predominantly due to thermal emission from the star-forming regions, but we manage to isolate the AGN photoionized component which nicely matches the [O iii] emission. The mass outflow rate of the extended ionized outflow is similar to that of the nuclear X-ray wind and then decreases with radius, implying that the outflow either slows down or that the AGN activity has recently increased. However, the hard X-ray emission from the circumnuclear ring suggests that star formation might in principle contribute to the outflow. The integrated mass outflow rate, kinetic energy rate, and outflow velocity are broadly consistent with the typical relations observed in more luminous AGN.
We report the results of analyses of galactic outflows in a sample of 45 low-redshift starburst galaxies in the COS Legacy Archive Spectroscopic SurveY (CLASSY), augmented by five additional similar starbursts with Cosmic Origins Spectrograph (COS) data. The outflows are traced by blueshifted absorption lines of metals spanning a wide range of ionization potential. The high quality and broad spectral coverage of CLASSY data enable us to disentangle the absorption due to the static interstellar medium (ISM) from that due to outflows. We further use different line multiplets and doublets to determine the covering fraction, column density, and ionization state as a function of velocity for each outflow. We measure the outflow’s mean velocity and velocity width, and find that both correlate in a highly significant way with the star formation rate, galaxy mass, and circular velocity over ranges of four orders of magnitude for the first two properties. We also estimate outflow rates of metals, mass, momentum, and kinetic energy. We find that, at most, only about 20% of silicon created and ejected by supernovae in the starburst is carried out in the warm phase we observe. The outflows’ mass-loading factor increases steeply and inversely with both circular and outflow velocity (log–log slope ∼−1.6), and reaches ∼10 for dwarf galaxies. We find that the outflows typically carry about 10%–100% of the momentum injected by massive stars and about 1%–20% of the kinetic energy. We show that these results place interesting constraints on, and new insights into, models and simulations of galactic winds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.