Melanin transfer from melanocytes to keratinocytes and subsequent accumulation in the supranuclear region is a critical process in skin pigmentation and protection against UVR. We have previously proposed that the main mode of transfer between melanocytes and keratinocytes is through exo/endocytosis of the melanosome core, termed melanocore. In this study, we developed an in vitro uptake assay using melanocores secreted by melanocytes. We show that the uptake of melanocores, but not melanosomes, by keratinocytes is protease-activated receptor-2-dependent. Furthermore, we found that the silencing of the early endocytic regulator Rab5b, but not the late endocytic regulators Rab7a or Rab9a, significantly impairs melanocore uptake by keratinocytes. After uptake, we observed that melanin accumulates in compartments that are positive for both early and late endocytic markers. We found that melanin does not localize to either highly degradative or acidic organelles, as assessed by LysoTracker and DQ-BSA staining, despite the abundance of these types of organelles within keratinocytes. Therefore, we propose that melanocore uptake leads to storage of melanin within keratinocytes in hybrid endocytic compartments that are not highly acidic or degradative. By avoiding lysosomal degradation, these specialized endosomes may allow melanin to persist within keratinocytes for long periods.
Skin pigmentation involves the production of the pigment melanin by melanocytes, in melanosomes and subsequent transfer to keratinocytes. Within keratinocytes, melanin polarizes to the apical perinuclear region to form a protective cap, shielding the DNA from ultraviolet radiation‐induced damage. Previously, we found evidence to support the exocytosis by melanocytes of the melanin core, termed melanocore, followed by endo/phagocytosis by keratinocytes as a main form of transfer, with Rab11b playing a key role in the process. Here, we report the requirement for the exocyst tethering complex in melanocore exocytosis and transfer to keratinocytes. We observed that the silencing of the exocyst subunits Sec8 or Exo70 impairs melanocore exocytosis from melanocytes, without affecting melanin synthesis. Moreover, we confirmed by immunoprecipitation that Rab11b interacts with Sec8 in melanocytes. Furthermore, we found that the silencing of Sec8 or Exo70 in melanocytes impairs melanin transfer to keratinocytes. These results support our model as melanocore exocytosis from melanocytes is essential for melanin transfer to keratinocytes and skin pigmentation and suggest that the role of Rab11b in melanocore exocytosis is mediated by the exocyst.
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
The skin acts as a barrier to environmental insults and provides many vital functions. One of these is to shield DNA from harmful ultraviolet radiation, which is achieved by skin pigmentation arising as melanin is produced and dispersed within the epidermal layer. This is a crucial defence against DNA damage, photo‐ageing and skin cancer. The mechanisms and regulation of melanogenesis and melanin transfer involve extensive crosstalk between melanocytes and keratinocytes in the epidermis, as well as fibroblasts in the dermal layer. Although the predominant mechanism of melanin transfer continues to be debated and several plausible models have been proposed, we and others previously provided evidence for a coupled exo/phagocytosis model. Herein, we performed histology and immunohistochemistry analyses and demonstrated that a newly developed full‐thickness three‐dimensional reconstructed human pigmented skin model and an epidermis‐only model exhibit dispersed pigment throughout keratinocytes in the epidermis. Transmission electron microscopy revealed melanocores between melanocytes and keratinocytes, suggesting that melanin is transferred through coupled exocytosis/phagocytosis of the melanosome core, or melanocore, similar to our previous observations in human skin biopsies. We, therefore, present evidence that our in vitro models of pigmented human skin show epidermal pigmentation comparable to human skin. These findings have a high value for studies of skin pigmentation mechanisms and pigmentary disorders, whilst reducing the reliance on animal models and human skin biopsies.
In the skin epidermis, melanin is produced and stored within melanosomes in melanocytes and then transferred to keratinocytes. Different models have been proposed to explain the melanin transfer mechanism, which differ essentially in how melanin is transferred either in a membrane-bound melanosome or as a melanosome core, i.e. melanocore. Here we investigated the endocytic route followed by melanocores and melanosomes during internalization by keratinocytes, by comparing the uptake of melanocores isolated from the supernatant of melanocyte cultures with melanosomes isolated from melanocytes. We show that inhibition of actin dynamics impairs the uptake of both melanocores and melanosomes. Moreover, depletion of critical proteins involved in actin-dependent uptake mechanisms, namely Rac1 and CtBP1/BARS, together with inhibition of Rac1 dependent signaling pathways or macropinocytosis suggest that melanocores are internalized by phagocytosis, whereas melanosomes are internalized by macropinocytosis. Furthermore, we confirmed that melanocore, but not melanosome uptake is dependent on the Protease-activated receptor 2 (PAR2) and found that PAR2 can be specifically activated by melanocores. As skin pigmentation was shown to be regulated by PAR2 activation, our results further support the melanocore mechanism of melanin transfer and further refine this model, which can now be described as coupled melanocore exo/phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.