Objective: Recent advances in development of low-cost single-channel electroencephalography (EEG) headbands have opened new possibilities for applications in health monitoring and brain-computer interface (BCI) systems. These recorded EEG signals, however, are often contaminated by eye blink artifacts that can yield the fallacious interpretation of the brain activity. This paper proposes an efficient algorithm, VME-DWT, to remove eye blinks in a short segment of the single EEG channel. Method : The proposed algorithm: (a) locates eye blink intervals using Variational Mode Extraction (VME) and (b) filters only contaminated EEG interval using an automatic Discrete Wavelet Transform (DWT) algorithm. The performance of VME-DWT is compared with an automatic Variational Mode Decomposition (AVMD) and a DWT-based algorithms, proposed for suppressing eye blinks in a short segment of the single EEG channel. Results: The VME-DWT detects and filters 95% of the eye blinks from the contaminated EEG signals with SNR ranging from −8 to +3 dB. The VME-DWT shows superiority to the AVMD and DWT with the higher mean value of correlation coefficient (0.92 vs. 0.83, 0.58) and lower mean value of RRMSE (0.42 vs. 0.59, 0.87). Significance: The VME-DWT can be a suitable algorithm for removal of eye blinks in low-cost single-channel EEG systems as it is: (a) computationally-efficient, the contaminated EEG signal is filtered in millisecond time resolution, (b) automatic, no human intervention is required, (c) low-invasive, EEG intervals without contamination remained unaltered, and (d) low-complexity, without need to the artifact reference.
The electroencephalogram signal (EEG) often suffers from various artifacts and noises that have physiological and non-physiological origins. Among these artifacts, eye blink, due to its amplitude is considered to have the most influence on EEG analysis. In this paper, a low complexity approach based on Stationary Wavelet Transform (SWT) and skewness is proposed to remove eye blink artifacts from EEG signals. The proposed method is compared against Automatic Wavelet Independent Components Analysis (AWICA) and Enhanced AWICA. Normalized Root Mean Square Error (NRMSE), Peak Signal-to-Noise Ratio (PSNR), and correlation coefficient ( ρ ) between filtered and pure EEG signals are utilized to quantify artifact removal performance. The proposed approach shows smaller NRMSE, larger PSNR, and larger correlation coefficient values compared to the other methods. Furthermore, the speed of execution of the proposed method is considerably faster than other methods, which makes it more suitable for real-time processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.