Human papillomaviruses (HPV)-16 and 18 are the most prevalent types associated with cervical cancer. HPV L1 and L2 capsid proteins and E7 oncoprotein play crucial roles in HPV-related diseases. Hence, these proteins were proposed as target antigens for preventive and therapeutic vaccines. In this study, two multiepitope DNA-based HPV vaccine candidates were designed using in silico analysis including the immunogenic and conserved epitopes of HPV16/18 L1, L2 and E7 proteins (the L1-L2-E7 fusion DNA), and of heat shock protein 70 (HSP70) linked to the L1-L2-E7 DNA construct (the HSP70-L1-L2-E7 fusion DNA). Next, the expression of the L1-L2-E7 and HSP70-L1-L2-E7 multiepitope DNA constructs was evaluated in a mammalian cell line. Finally, immunological responses and antitumor effects of the DNA constructs were investigated in C57BL/6 mice. Our data indicated high expression rates of the designed multiepitope L1-L2-E7 DNA (~ 56.16%) and HSP70-L1-L2-E7 DNA (~ 80.45%) constructs in vitro. The linkage of HSP70 epitopes to the L1-L2-E7 DNA construct significantly increased the gene expression. Moreover, the HSP70-L1-L2-E7 DNA construct could significantly increase immune responses toward Th1 response and CTL activity, and induce stronger antitumor effects in mouse model. Thus, the designed HSP70-L1-L2-E7 DNA construct represents promising results for development of HPV DNA vaccine candidates.
KeywordsHuman papillomavirus • Early protein • Late protein • Immunoinformatics tools • Multiepitope DNA vaccine * Azam Bolhassani
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.