In this paper the stability of the annular laser beam (ALB) direct wire-deposition process, which enables process symmetry and a well-defined ALB workpiece irradiation proportion (WIP) and related energy input onto the workpiece and the wire surface is considered. Various initial process phase strategies with respect to different initial wire-end positions and WIPs were analysed based on the process visualization and outcome, and the melt pool temperature. It was shown that in addition to a precise synchronization of the mutually time-dependent ALB power, wire and workpiece feeding velocity, the fastest and the most robust transition into a stable stationary process could be achieved with the initial position of the wire-end on the workpiece surface. Additionally, the WIP was shown to have a strong and nonlinear influence on the process stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.