Prevalence of cooperation within groups of selfish individuals is puzzling in that it contradicts with the basic premise of natural selection. Favoring players with higher fitness, the latter is key for understanding the challenges faced by cooperators when competing with defectors. Evolutionary game theory provides a competent theoretical framework for addressing the subtleties of cooperation in such situations, which are known as social dilemmas. Recent advances point towards the fact that the evolution of strategies alone may be insufficient to fully exploit the benefits offered by cooperative behavior. Indeed, while spatial structure and heterogeneity, for example, have been recognized as potent promoters of cooperation, coevolutionary rules can extend the potentials of such entities further, and even more importantly, lead to the understanding of their emergence. The introduction of coevolutionary rules to evolutionary games implies, that besides the evolution of strategies, another property may simultaneously be subject to evolution as well. Coevolutionary rules may affect the interaction network, the reproduction capability of players, their reputation, mobility or age. Here we review recent works on evolutionary games incorporating coevolutionary rules, as well as give a didactic description of potential pitfalls and misconceptions associated with the subject. In addition, we briefly outline directions for future research that we feel are promising, thereby particularly focusing on dynamical effects of coevolutionary rules on the evolution of cooperation, which are still widely open to research and thus hold promise of exciting new discoveries.
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.
Extensive cooperation among unrelated individuals is unique to humans, who often sacrifice personal benefits for the common good and work together to achieve what they are unable to execute alone. The evolutionary success of our species is indeed due, to a large degree, to our unparalleled other-regarding abilities. Yet, a comprehensive understanding of human cooperation remains a formidable challenge. Recent research in social science indicates that it is important to focus on the collective behavior that emerges as the result of the interactions among individuals, groups, and even societies. Non-equilibrium statistical physics, in particular Monte Carlo methods and the theory of collective behavior of interacting particles near phase transition points, has proven to be very valuable for understanding counterintuitive evolutionary outcomes. By studying models of human cooperation as classical spin models, a physicist can draw on familiar settings from statistical physics. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. The complexity of solutions therefore often surpasses that observed in physical systems. Here we review experimental and theoretical research that advances our understanding of human cooperation, focusing on spatial pattern formation, on the spatiotemporal dynamics of observed solutions, and on self-organization that may either promote or hinder socially favorable states.Comment: 48 two-column pages, 35 figures; Review accepted for publication in Physics Report
Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination-one of the most important preventive measures of modern times-is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research.
The diversity in wealth and social status is present not only among humans, but throughout the animal world. We account for this observation by generating random variables that determine the social diversity of players engaging in the prisoner's dilemma game. Here the term social diversity is used to address extrinsic factors that determine the mapping of game payoffs to individual fitness. These factors may increase or decrease the fitness of a player depending on its location on the spatial grid. We consider different distributions of extrinsic factors that determine the social diversity of players, and find that the power-law distribution enables the best promotion of cooperation. The facilitation of the cooperative strategy relies mostly on the inhomogeneous social state of players, resulting in the formation of cooperative clusters which are ruled by socially high-ranking players that are able to prevail against the defectors even when there is a large temptation to defect. To confirm this, we also study the impact of spatially correlated social diversity and find that cooperation deteriorates as the spatial correlation length increases. Our results suggest that the distribution of wealth and social status might have played a crucial role by the evolution of cooperation amongst egoistic individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.