Ship-to-shore connection is an important technological element that reduces air pollution in ports. Therefore, ports install facilities that allow mooring ships to connect to the port distribution network. By 2025, this will be mandatory for all ports in Europe. This can be a challenging task in most ports due to the different frequency of the network and ship frequency. This problem can be solved by the use of grid-forming static frequency converters. This solution also brings some other advantages: The ship is not threatened by high shore short-circuit currents, and the port distribution network is not affected by the character of the ship load. However, frequency converter software must include a droop control algorithm to ensure that voltage deviations do not exceed the allowed limits during transients. Typical frequency converters used for shore connection are those developed as static frequency converters (SFCs). However, those converters were not developed for large power outputs, which are needed to power large vessels, such as ferries or cruise ships. This paper proposes motor drives that were modified to operate as SFCs. This approach has quite a lot of advantages which are described in this article. This paper describes both a standard shore connection system without a frequency converter and a solution that includes static frequency converters. The paper then focusses on voltage deviation estimations during connection/disconnection of large load (ferry or cruise ship) to static frequency converters. In this work, a high-voltage shore connection (HVSC) simulation model is developed, including a frequency converter, a shoreside transformer, medium-voltage (MV) connection cables, and a power system of the ship, to analyze in detail the behavior of the system in the case of connection or disconnection of the ship load. The model was made in DIgSILENT PowerFactory for the case of a commercial port in southern France. The model gives credible estimations of voltage drops/surges during transient and steady states.
The article is focused on the issue of blackouts in a water industry and the selection of a renewable energy source for a water treatment plant. In the case of power outage, it is necessary to constantly ensure the supply of a drinking water, if this requirement would not be met, it could cause of deterioration of hygiene and health of the population. To be able to convey drinking water during a blackout, it is mandatory to have a backup power supply. The state of the current water treatment plants in the Czech Republic is that they are using diesel generators as backup power supply, which causes air pollution. There are other options of power supply that can be used, such as renewable energy sources. By using a multi-criteria analysis method, renewable energy sources were analyzed for a water treatment plant in the selected region. Based on the results, it seems that the most suitable choice is a small hydro power plant at the entry points of water treatment plant. Other possibilities of renewable energy sources that may be suitable for a water treatment plant and the usage of a multi-criteria analysis method for a water treatment plant in other countries are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.