Abstract. Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2–EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm−3 h, the formed SOA was 1–2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.
Soot particle (black carbon) morphology is of dual interest, both from a health perspective and due to the influence of soot on the global climate. In this study, the mass-mobility relationships, and thus effective densities, of soot agglomerates from three types of soot emitting sources were determined in situ by combining a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). High-resolution transmission electron microscopy was also used. The soot sources were diesel engines, diffusion flame soot generators, and tapered candles, operated under varying conditions. The soot microstructure was found to be similar for all sources and settings tested, with a distance between the graphene layers of 3.7-3.8 Å. The particle specific surface area was found to vary from 100 to 260 m 2 /g. The particle mass-mobility relationship could be described by a power law function with an average exponent of 2.3 (±0.1) for sources with a volatile mass fraction <10% and primary particle sizes of 11-29 nm. The diesel exhaust from a heavy duty engine at idling had a substantially higher volatile mass fraction and a higher mass-mobility exponent of 2.6. The mass-mobility exponent was essentially independent of the number of primary particles in the range covered (N pp = 10-1000). Despite the similar exponents, the effective density varied substantially from source to source. Two parameters were found to alter the effective density: primary particle size and coating mass fraction. A correlation was found between primary particle size and mass-mobility relationship/effective density and an empirical Address correspondence to Jenny Rissler, Ergonomics and Aerosol Technology, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden. E-mail: jenny.rissler@design.lth.se expression relating these parameters is presented. The effects on the DMA-APM results of doubly charged particles and DMA agglomerate alignment were investigated and quantified. Finally, the dataset was compared to three theoretical approaches describing agglomerate particles' mass-mobility relationship.
In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic is the main reason for high particle concentrations in busy street-and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM 10 ) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, PIXE and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM 10 , respectively. The results show that in the road simulator, where resuspension is minimised, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consists almost entirely of minerals from the pavement stone material, but also that S is enriched for the submicron particles and that Zn is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM 10 emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results implies that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties.
Chemical composition and mass emission factors of candle smoke particlesPagels, Joakim; Wierzbicka, Aneta; Fors, Erik; Isaxon, Christina; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Bohgard, Mats Link to publication Citation for published version (APA): Pagels, J., Wierzbicka, A., Fors, E., Isaxon, C., Dahl, A., Gudmundsson, A., ... Bohgard, M. (2009). Chemical composition and mass emission factors of candle smoke particles. Journal of Aerosol Science, 40(3), 193-208. DOI: 10.1016/j.jaerosci.2008 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.