In failure‐time settings, a competing event is any event that makes it impossible for the event of interest to occur. For example, cardiovascular disease death is a competing event for prostate cancer death because an individual cannot die of prostate cancer once he has died of cardiovascular disease. Various statistical estimands have been defined as possible targets of inference in the classical competing risks literature. Many reviews have described these statistical estimands and their estimating procedures with recommendations about their use. However, this previous work has not used a formal framework for characterizing causal effects and their identifying conditions, which makes it difficult to interpret effect estimates and assess recommendations regarding analytic choices. Here we use a counterfactual framework to explicitly define each of these classical estimands. We clarify that, depending on whether competing events are defined as censoring events, contrasts of risks can define a total effect of the treatment on the event of interest or a direct effect of the treatment on the event of interest not mediated by the competing event. In contrast, regardless of whether competing events are defined as censoring events, counterfactual hazard contrasts cannot generally be interpreted as causal effects. We illustrate how identifying assumptions for all of these counterfactual estimands can be represented in causal diagrams, in which competing events are depicted as time‐varying covariates. We present an application of these ideas to data from a randomized trial designed to estimate the effect of estrogen therapy on prostate cancer mortality.
This JAMA Guide to Statistics and Methods explains the meaning underlying the proportional hazards (PH) assumption underlying Cox regression and survival analyses, and proposes that reports of survival differences might replace statistical tests of the PH assumption because they are more meaningful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.