The complex fluxes between standing and harvested carbon stocks, and the linkage between harvested biomass and fossil fuel substitution, call for a holistic, system-wide analysis in a life-cycle perspective to evaluate the impacts of forest management and forest product use on carbon balances. We have analysed the net carbon emission under alternative forest management strategies and product uses, considering the carbon fluxes and stocks associated with tree biomass, soils, and forest products. Simulations were made using three Norway spruce ( Picea abies (L.) Karst.) forest management regimes (traditional, intensive management, and intensive fertilization), three slash management practices (no removal, removal, and removal with stumps), two forest product uses (construction material and biofuel), and two reference fossil fuels (coal and natural gas). The greatest reduction of net carbon emission occurred when the forest was fertilized, slash and stumps were harvested, wood was used as construction material, and the reference fossil fuel was coal. The lowest reduction occurred with a traditional forest management, forest residues retained on site, and harvested biomass was used as biofuel to replace natural gas. Product use had the greatest impact on net carbon emission, whereas forest management regime, reference fossil fuel, and forest residue usage as biofuel were less significant.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.