This paper describes a novel strategy for microgrid operation and control, which enables a seamless transition from grid connected mode to islanded mode, and restoration of utility supply, without loss or disruption to loads sensitive to frequency or phase angle dynamics. A simulation study is conducted on a microgrid featuring inverter connected renewable generation, and power electronic interfaced loads. Therefore, the microgrid inherently has low inertia, which would subsequently affect the dynamic characteristics of the microgrid, in particular during mode transition. The microgrid is controlled by means of synchrophasor data to achieve synchronous island operation, enabling the microgrid to track the utility frequency and phase angle. The simulation includes synchrophasor acquisition and telecoms delays, allowing for detailed investigation of the microgrid dynamics under various mode transition scenarios, including the risk of commutation failure of the inverter sources. The proposed method is demonstrated to successfully maintain a microgrid in synchronism with the main utility grid after the transition to islanded mode without significant impact on various equipment connected to the microgrid. Thus, synchronous island operation of low inertia microgrids is feasible. This study also showed that utility supply could be seamlessly restored if the microgrid is operated as a synchronous island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.