Objective-To analyze the effect of white matter lesions in different brain regions on regional cortical glucose metabolism, regional cortical atrophy, and cognitive function in a sample with a broad range of cerebrovascular disease and cognitive function.Methods-Subjects (n = 78) were recruited for a study of subcortical ischemic vascular disease (SIVD) and Alzheimer disease (AD) contributions to dementia. A new method was developed to define volumes of interest from high-resolution three-dimensional T1-weighted MR images. Volumetric measures of MRI segmented white matter signal hyperintensities (WMH) in five different brain regions were related to regional PET glucose metabolism (rCMRglc) in cerebral cortex, MRI measures of regional cortical atrophy, and neuropsychological assessment of executive and memory function.Results-WMH was significantly higher in the prefrontal region compared to the other brain regions. In all subjects, higher frontal and parietal WMH were associated with reduced frontal rCMRglc, whereas occipitotemporal WMH was only marginally associated with frontal rCMRglc. These associations were stronger and more widely distributed in nondemented subjects where reduced frontal rCMRglc was correlated with WMH for all regions measured. In contrast, there was no relationship between WMH in any brain region and rCMRglc in either parietal or occipitotemporal regions. WMHs in all brain regions were associated with low executive scores in nondemented subjects.Conclusions-The frontal lobes are most severely affected by SIVD. WMHs are more abundant in the frontal region. Regardless of where in the brain these WMHs are located, they are associated with frontal hypometabolism and executive dysfunction.Vascular factors are increasingly recognized as important contributors to cognitive decline and dementia. Subcortical ischemic vascular disease (SIVD) accounts for 36 to 67% of all vascular
The increase in ventricular CSF (vCSF) total tau probably reflects axonal damage, known to be a central pathologic mechanism in traumatic brain injury (TBI). These results suggest that vCSF total tau may be an important early biochemical neuromarker for predicting long-term outcome in patients with a severe TBI.
Idiopathic normal pressure hydrocephalus (INPH) is a syndrome of ventriculomegaly, gait impairment, cognitive decline and incontinence that occurs in an elderly population prone to many types of comorbidities. Identification of the comorbidities is thus an important part of the clinical management of INPH patients. In 2011, a task force was appointed by the International Society for Hydrocephalus and Cerebrospinal Fluid Disorders (ISHCSF) with the objective to compile an evidence-based expert analysis of what we know and what we need to know regarding comorbidities in INPH. This article is the final report of the task force. The expert panel conducted a comprehensive review of the literature. After weighing the evidence, the various proposals were discussed and the final document was approved by all the task force members and represents a consensus of expert opinions. Recommendations regarding the following topics are given: I. Musculoskeletal conditions; II. Urinary problems; III. Vascular disease including risk factors, Binswanger disease, and white matter hyperintensities; IV. Mild cognitive impairment and Alzheimer disease including biopsies; V. Other dementias (frontotemporal dementia, Lewy body, Parkinson); VI. Psychiatric and behavioral disorders; VII. Brain imaging; VIII. How to investigate and quantify. The task force concluded that comorbidity can be an important predictor of prognosis and post-operative outcome in INPH. Reported differences in outcomes among various INPH cohorts may be partly explained by variation in the rate and types of comorbidities at different hydrocephalus centers. Identification of comorbidities should thus be a central part of the clinical management of INPH where a detailed history, physical examination, and targeted investigations are the basis for diagnosis and grading. Future INPH research should focus on the contribution of comorbidity to overall morbidity, mortality and long-term outcomes.
Backround-Pathological tau protein concentrations in CSF are found in both Alzheimer's disease (AD) and frontotemporal dementia (FTD), but studies on brain tissue have suggested that the tau pathology in AD diVers from that in FTD and that the diVerence may be related to the degree of phosphorylation. As CSF tau protein is increased after stroke, tau may also be implicated in the pathophysiology of vascular dementia, of which subcortical arteriosclerotic encephalopathy (SAE) is a putative subtype. Objectives-To investigate the nature of tau protein in CSF and the involvement of total CSF tau and phosphorylated CSF tau (phosphotau) in various types of dementia. Methods-Using ELISAs for total tau and tau phosphorylated at Thr181 (phosphotau), the CSF concentrations of total tau and phosphotau were determined in patients with probable and possible AD (n=41 and 19, respectively), FTD (n=18), SAE (n=17), and Parkinson's disease (PD; n=15) and in age matched controls (n=17). All the antibodies stained the lower molecular weight bands, whereas only the antibodies that recognise phosphorylated tau stained the higher molecular bands. Results-Both CSF tau and CSF phosphotau were increased in probable AD compared with FTD (p<0.001), SAE (p<0.001), PD (p<0.001), and controls (p<0.001). CSF phosphotau was increased in possible AD compared with FTD (p<0.001) and SAE (p<0.001). CSF tau and CSF phosphotau were positively correlated in all the groups. Molecular weight forms of tau ranging from 25 kDa to 80 kDa were found in the CSF Conclusion-Both phosphorylated and unphosphorylated tau isoforms were present in the CSF, and tau protein appeared in both truncated and full length forms. The results suggest that the CSF concentrations of tau and phosphotau are increased in about two thirds of patients with probable AD and in half of those with possible AD but are normal in FTD, SAE, and PD compared with normal aging. Values in the normal range do not exclude AD. (J Neurol Neurosurg Psychiatry 2001;70:624-630)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.